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ABSTRACT

Methods to spectrally calibrate imaging spectrographs,
also known as hyperspectral instruments, are common and
known, but few look into how well the wavelength cali-
bration performs. When building hyperspectral instruments
in-house, performing sufficient wavelength calibration is nec-
essary. This report therefore investigates how well different
models describe the wavelength to pixel relationship, eval-
uated using Root Mean Square Error (RMSE), in a simple
set-up with argon and mercury emission lines. A linear fit be-
tween pixel index and wavelength is shown to perform well,
but estimating the diffraction angle with an arctan function
and calculating wavelength using the grating equation also
shows promising results. This report is meant to aid oth-
ers calibrating their own hyperspectral imagers with limited
resources by showing how wavelength calibration accuracy
varies with different models.

Index Terms— Hyperspectral imager, wavelength cali-
bration, calibration accuracy

1. INTRODUCTION

Hyperspectral imaging, or imaging spectroscopy, is a quickly
growing field. Existing instruments range from large and spe-
cialized space instruments such as Medium Resolution Imag-
ing Spectrometer (MERIS) onboard Envisat [1], to commer-
cial instruments from companies such as Norsk Elektro Op-
tikk (NEO) and Specim, to small and low-cost instruments
that can be built in-house, e.g. [2, 3, 4]. Commercial instru-
ments are typically calibrated before being delivered to the
customer. When building the instrument in-house, however,
one must also perform the calibration and make sure that it
is accurate, allowing pixels on the detector to be mapped to
their corresponding wavelength.

Wavelength calibration, also known as spectral calibra-
tion, determines the relationship between spectral pixel index
and wavelength, so that pixels on the detector can be mapped
to their corresponding wavelength. Knowledge of this pixel
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to wavelength function is important as even minor spectral
deviations can affect the detection of spectral features sig-
nificantly [5]. Laboratory techniques to accomplish wave-
length calibration includes calibration using spectral lamps,
monochromator, tunable laser or gas cells [6]. Monochro-
mator and tunable laser require more expensive and complex
equipment, while the use of spectral lamps is a simpler op-
tion, especially for a wider spectral range such as the whole
visible spectrum.

Often, a close to linear relation between the spectral pixel
index and wavelength is expected. For instruments with a
grating, the light is dispersed following the grating equation

mλ = d(sinα+ sinβ), (1)

where m is the spectral order, λ is the wavelength, d is the
grating groove spacing, α is the angle of the incoming light
(incident angle) and β is the angle of the diffracted light
(diffraction angle) [7]. The change in β with wavelength
is typically small, which leads to a close to linear relation-
ship. However, small deviations from a linear fit are often
observed. Solving for the diffraction angle as a function of
wavelength, β(λ), shows that the relationship is follows an
arcsin function

β(λ) = arcsin

(
mλ

d
− sinα

)
, (2)

which indeed can be approximated as linear in areas close to
zero, but is not truly linear.

Other factors may also affect deviations from a linear fit.
Chrien et al. mention that small misalignment in the angular
positioning of the grating may introduce deviations [8]. Op-
tical aberrations from the lenses may also affect the incident
angles of light rays onto the grating, which again may lead to
a nonlinear relation in dispersion of light.

In this report a pushbroom Hyperspectral Imager (HSI)
with a transmission grating design is used in combination
with argon and mercury spectral lamps to investigate the pixel
to wavelength relationship. Different models are used to es-
timate this relationship, and their accuracy compared using
Root Mean Square Error (RMSE). These investigations are
meant to aid others that are developing and calibrating hy-
perspectral instruments in-house with little or no experience



with wavelength calibration. Understanding which parame-
ters that are important to consider will help to minimize the
wavelength calibration errors when using simple set-ups and
methods.

2. EQUIPMENT

The pushbroom hyperspectral instrument presented in [3],
with a transmission grating design, is used. The designed
spectral range was set to 400 to 800 nm, but the full sensor
covers about 240 to 970 nm. The designed center wave-
length is λc = 600 nm, which gives a diffraction angle of
βc = 10.37◦. Little signal is recorded below 400 nm due to
low Quantum Efficiency (QE) in the sensor, and the signal
above 800 nm is normally not used due to appearance of sec-
ond order diffraction effects [3]. The full spectral range can,
however, be used for wavelength calibration. Specifications
of the instrument are summarized in Table 1.

Table 1: Specifications of the HSI.

Parameter Specification
Camera sensor Sony IMX174
Image size (1936, 1216) pixels
Designed spectral range 400 - 800 nm
Theoretical FWHM 3.3 nm
Spectral sampling distance 0.38 nm per pixel
Grating 300 lines/mm, transmission
Slit height 7 mm
Slit width 50 µm

Emission lines from argon (Ar) and mercury-argon (Hg)
wavelength calibration lamps (Newport Models 6030 and
6035, respectively) were used in combination with a 30 cm
integrating sphere (Model ISS-30-VA, Gigahertz Optik) with
a 10 cm output port, for uniform illumination.

The theoretical Full Width at Half Maximum (FWHM) of
the HSI is 3.3 nm, while the measured value tends to fall be-
tween 3.5 to 4.5 nm for the wavelengths in the desired spectral
range [9]. This means that emission lines from the calibration
lamps that are close to each other (less than 3-4 nm apart) will
be seen as one single line by the instrument.

3. DATA ANALYSIS

The goal of the data analysis is to detect the pixel index of
each recorded emission line and map them to their respective
reference wavelength. The detected pixel index and wave-
length pairs are further used as input to different models to
estimate a function describing the pixel index to wavelength
relationship. RMSE is then calculated to determine the accu-
racy of fit and to provide an easy method for comparison.

3.1. Data acquisition

To collect images of the spectral calibration lamps the HSI
was mounted in front of the integrating sphere, illuminated
by one calibration lamp at the time. The exposure time was
adjusted so that the image was well lit but not overexposed,
and 10 frames taken for each calibration lamp. Combined
images were made by adding images of each lamp together,
as seen in Fig. 1, to provide a calibration image with both
argon and mercury emission lines available.

Fig. 1: Spectral calibration frame, with both argon and
mercury-argon emission lines.

The center horizontal line was extracted and used for the
analysis to avoid smile effects. For full calibration, the wave-
length calibration can be done for each horizontal line, or
smile can be corrected as in [10] or [11].

3.2. Detecting spectral lines

The center line was smoothed, and the spectral peaks de-
tected using Python code and the scipy signal function
find peaks(), which gives the position and height of
detected peaks with peak value over a certain threshold. The
detected peaks were then manually mapped to the known
emission lines of argon and mercury (air wavelengths re-
trieved from [12] and [13]). Doing this manually makes it
easy to know which detected lines are double peaks, i.e. two
lines so close to each other that they are recorded as a single
line within the FWHM of the instrument. Using automated
detection and mapping to correct wavelengths is also pos-
sible, but it is then important to be certain that the correct
wavelengths are being mapped. The detected emission lines
are shown in Fig. 2, and their values in Table 2.

The detected emission lines are further divided into sets,
also shown in Table 2, to investigate the impact of using dou-
ble peaks and of using only a small selection of emission
lines for the calibration. Set 1 contains all the detected wave-
lengths, set 2 is a subset with the two broadest double peaks
removed, set 3 contains only single peaks (except 794.82 nm
as this is partly merged with the 800.61/801.48 nm double
peak), and set 4 uses only a small selection of the single peaks.



Fig. 2: Center horizontal line of the calibration frame (black
line), and the reference wavelengths (blue stripes).

Table 2: Argon (Ar) and mercury (Hg) emission lines (from
[12, 13]). The ”x” marks emission lines used in each set.

Lamp Peak Set Set Set Set
wavelength [nm] 1 2 3 4

Hg 435.83 x x x x
Hg 546.07 x x x
Hg 576.96 / 579.02 x
Ar 696.54 x x x x
Ar 706.72 x x x
Ar 727.29 x x x
Ar 738.40 x x x
Ar 750.39 / 751.46 x x
Ar 763.51 x x x x
Ar 772.37 / 772.42 x x
Ar 794.82 x x
Ar 800.62 / 801.48 x
Ar 810.37 / 811.53 x x
Ar 826.45 x x x x
Ar 840.81 / 842.46 x x
Ar 852.14 x x x x
Hg 871.68 x x x
Ar 912.30 x x x x

3.3. Methods

Different ways of describing the relationship between pixel
index pλ and wavelength λ are investigated to see whether
using a standard polynomial curve fit is sufficient, or if in-
cluding theoretical knowledge from the grating equation
and/or trigonometric relations between the diffraction angle
and pixel position can improve the calibration.

3.3.1. Method 1: Polynomial curve fit of λ

A second or third order polynomial fit is often used to de-
scribe the wavelength to pixel relationship [14, 8, 9]. Here,
polynomial fits of different orders are used to investigate this
relationship

λ̂ =

n∑
i=0

ai · piλ, (3)

where λ̂ is the estimated wavelength, n ∈ {1..3} is the order
of the polynomial, pλ the pixel index of wavelength λ, and ai
the polynomial fit coefficients.

3.3.2. Method 2: Polynomial curve fit of β

The polynomial curve fit can also be used to estimate diffrac-
tion angle (instead of wavelength) from the pixel index. The
grating equation, Eq. (1), can then be used to convert from
diffraction angle to wavelength. This way, the sine relation in
the grating equation is excluded from the polynomial curve
fit, but included in the model as the grating equation is used.
The polynomial curve fit becomes

β̂ =

n∑
i=0

bi · piλ, (4)

where β̂ is the estimated diffraction angle, and bi are the poly-
nomial fit coefficients. By assuming α = 0 and using spectral
order m = 1, the grating equation applied becomes

λ̂ = d · sin β̂, (5)

which completes the map from pixel index to wavelength.

3.3.3. Method 3: Curve fit of β with arctan

The sensor is tilted 10.37◦ from the grating, matching the
diffraction angle βc of the center wavelength. According to
simple trigonometry, an offset in diffraction angle, denoted
∆β = β̂ − βc, should result in an offset in pixel position on
the sensor, ∆pλ = pλ − pλc

, according to

∆β = arctan
(∆pλ · pwidth

l

)
, (6)

where β̂ is the estimated diffraction angle and pλ the cor-
responding pixel index, pλc

is the pixel index of the center
wavelength, pwidth is the width of each pixel, and l is the
focal length of the detector lens.

A least squares curve fit is made to the function

β̂ = c0 + arctan(c1 + c2 · pλ))), (7)

where c0..c2 are the coefficients of the fit. From theory, c0
corresponds to βc. The estimated diffraction angle is again
used with the simplified grating equation in Eq. (5) to find the
estimated wavelength.

3.3.4. Method 4: Curve fit of λ with grating equation

In addition, a least squares curve fit is made to the grating
equation, combined with the diffraction angle to pixel posi-
tion relationship described in Eq. (7). The function used for
the fit is

λ̂ = d0 · (sin(d1) + sin(d2 + arctan(d3 + d4 · pλ))), (8)



where d0..d4 are the coefficients of the fit. From theory, d1
corresponds to α, while d2 here corresponds to βc. An ad-
ditional version assuming α = 0 was also tested by forcing
d1 = 0, to reduce the number of coefficients that needed to be
estimated.

3.4. Leave-one-out cross-validation and RMSE

Leave-one-out cross-validation is used when testing the dif-
ferent models. For each set of emission lines, all lines except
one are used to calculate the model coefficients. The model
is then tested on the one emission line that was not included
in making the model. λ̂ is estimated from the pixel index pλ.
The error from the corresponding reference wavelength is cal-
culated as e = λref − λ̂. This is done for every emission line
in the set, resulting in a list of errors for each set.

The RMSE is further used as a measure on how well dif-
ferent models describe the wavelength to pixel relation. The
RMSE is calculated as

RMSE =

√√√√ 1

m

m∑
j=0

e2j , (9)

where m is the number of emission lines in the set, and ej
is the error for each emission line in the set. The RMSE is
calculated for each model with each set.

4. RESULTS AND DISCUSSION

The pixel indices of the detected emission lines form a close
to linear relation with the reference wavelengths, as seen in
Fig. 3. This confirms the close to linear relationship that is
expected and commonly assumed. There are, however, small
deviations from the linear fit, as seen in Fig. 4, where a sys-
tematic error pattern appears.

Fig. 3: Pixel index of the reference wavelengths (crosses)
with a linear fit (blue line) showing close to linear relation-
ship between reference wavelength and recorded pixel index.

The RMSE values for each method with each set are
shown in Table 3. The values for the curve fits of wavelength
via the grating equation (method 4) are shown in cursive as
these fits depend heavily on the initial guess values of the
coefficients (input parameters to the least squares curve fit

Fig. 4: Deviation between the reference wavelengths and es-
timated wavelength of the pixel indices after a linear fit.

Table 3: RMSE values for the different methods and sets. n
is the order of polynomial fit.

Method Set 1 Set 2 Set 3 Set 4
1 n=1 0.131 0.142 0.155 0.286

n=2 0.180 0.191 0.231 0.228
n=3 0.247 0.267 0.233 0.771

2 n=1 0.185 0.201 0.246 0.324
n=2 0.156 0.168 0.203 0.128
n=3 0.249 0.269 0.233 0.790

3 0.114 0.125 0.148 0.072
4 0.190 0.218 0.185 1.786

α=0 0.192 0.209 0.425 0.786

function). This is most likely due to few measurement points,
as estimating 4-5 coefficients from only 6-18 points gives
large uncertainties to the resulting model.

The lowest RMSE values for all sets are found with the
curve fit of diffraction angle (method 3). This suggests that
including theoretical models such as the grating equation and
simple trigonometry can help to explain the pixel to wave-
length relationship better than a standard linear fit. The first
order polynomial curve fit of wavelength (method 1 with n =
1, corresponds to linear fit) also shows low RMSE values for
all sets, suggesting that a linear fit still is a good approxima-
tion even though small deviations can be seen.

For most methods, set 1 has lowest RMSE values, and the
values increase as the number of emission lines in the sets
decrease. This suggests that there are too few measurement
points (emission lines) to make good fits. The double peaks
does not seem to degrade the results, but rather imrpove the
accuracy, which might be different if more points were avail-
able.

The deviation between reference wavelengths and esti-
mated wavelengths (as shown for method 1 with n = 1 in
Fig. 4) was plotted for the different methods and sets (not
shown). For all methods and sets the highest deviations were
found for the shortest wavelengths. Most reference wave-
lengths are located in the upper part of the spectrum investi-
gated, as seen in Fig. 2, leaving the lower part of the spectrum



thin with measurement points. Lamps providing additional
emission lines in the lower part of the spectrum might there-
fore help to improve all methods.

The pixel to wavelength relationship can be hard to model
as aberrations from the lenses and other optical effects may
alter the paths of the light rays. Errors from the calibration
equipment or from the pre-processing such as the peak detec-
tion algorithm may also affect the results.

5. CONCLUSIONS AND FUTURE WORK

The RMSE values in Table 3 generally show no clear trends to
which model is the better choice, but confirms that the pixel
to wavelength relationship is mainly linear and that a linear
fit might be sufficient. More measurement points are needed,
specially in the lower part of the spectrum (400 to 600 nm) to
improve the models further.

Future work will therefore be to using different calibra-
tion methods or additional spectral lamps to achieve more
measurement points across the full spectrum of interest. Dif-
ferent ways of detecting the emission line peaks in the pre-
processing can also be tested.
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