
Auroral detection in coloured
all-sky images

Not confidential

Tachet Alexia

Student at ENSTA Bretagne

FISE 2022

Specialised in Observation systems and artificial intelligence (SOIA)

Project for

the University Centre in Svalbard (UNIS)

Norway

ENSTA Bretagne supervisor : M. Bonnafont

UNIS supervisor : Ms. Partamies

March 14, 2022 - August 19, 2022

Acknowledgements

Firstly, I want to thank Mr.Toumi who helped me to find some ideas in the beginning of the
project.

I want to thank Mr.Bonnafont for his supervision and the answers he brought me.

I also want to thank Mr.Syrjäsuo for his help when I had to make some technical choices. I thank
Ms.Partamies for her support and her supervision.

Eventually, I thank Ms.Partamies and Mr.Syrjäsuo for the visit of the Svalbard observatory.

i

Abstract

English
During this project, I had to automate the detection of auroras on all-sky coloured images. I had
images captured with a camera Sony a7s and coming from the Kjell Henriksen Observatory located
near Longyearbyen, in Svalbard (Norway). It is more important not to miss an aurora than to
avoid detecting false auroras. Therefore, I tried to improve the accuracy and the recall rather than
the precision. I prepared the training, validation and testing data sets. Then I used classification
methods without Convolutional Neural Networks (CNN). I selected an efficient dimension reduction
algorithm and a classifier. For the dimension reduction, the Uniform Manifold Approximation and
Projection (UMAP) does not require to optimize lots of parameters. The chosen classifier is a
Random Forest. It also gives satisfying results without optimizing parameters. The best accuracy
obtained on the validation data set was around 80%, and the best recall was around 75%. These
results have been reached thanks to the Orthogonal Local Binary Pattern Combination (OLBPC)
applied on local areas of the images with the RGB, HSV and Lab color systems. The values
distribution of each channel on RGB and Lab channels also enabled to reach similar results.
However, the method based on Scale Invariant Feature Transform (SIFT) was not efficient at
all. The methods based on fine tuning of pretrained models offer especially good results even
on the testing data set. By taking into account the accuracy and the recall, the best models
using the “ResNet50” are those associated with classifiers composed of two layers of 150 neurons,
a dropout rate of 0.3 and a regularization “L2” (with a regularization rate equal to 0.1 or 0.5).
It enables to achieve a recall of 86%, a precision of 94% and an accuracy of 89% on the testing
data. The best model using “InceptionV3” is the one associated with a classifier composed of two
layers of 150 neurons, a dropout rate of 0.7 and a regularization “L2” with a rate equal to 0.5. It
enabled to reach an accuracy of 88%, a recall of 87% and a precision of 92% on the testing data.
Unfortunately, the recall was always worse than the precision. At the end, we notice that the
misclassified images contain clouds, moonlight or faint auroras. Eventually, I tried to split all the
classes into homogeneous classes but it was problematic. It did not enable to reach better results.
Indeed, the same label has been attributed to all images.

ii

Français
Durant ce projet, j’ai automatisé la détection des aurores sur des images plein ciel et en couleurs. Il
était plus important de ne manquer aucune aurore plutôt que d’éviter les fausses alarmes. J’ai donc
cherché à améliorer l’exactitude (Accuracy) et le rappel (Recall) plutôt que la précision (Precision).
Je disposais pour cela de photos capturées à l’aide d’un appareil photo Sony a7s à l’observatoire
Kjell Henriksen, à Longyearbyen, au Svalbard (Norvège). Dans un premier temps, j’ai préparé les
données d’entrainement, de validation et de test. Ensuite, j’ai utilisé des méthodes non basées sur
des réseaux de neurones convolutifs (CNN). J’ai choisi un algorithme de réduction de dimension
théoriquement efficace et ne nécessitant pas d’optimiser de nombreux paramètres, le "Uniform
Manifold Approximation and Projection (UMAP)". La classification, elle, se fait par une forêt
aléatoire (Random Forest). Cet algorithme ne nécessite pas non plus d’optimiser des paramètres.
La meilleure exactitude sur les données de validation était autour de 80%, et le meilleur rappel était
autour de 75%. Ces résultats ont été atteints grâce à l’algorithme d’extraction de caractéristiques
« Orthogonal Local Binary Pattern Combination (OLBPC) » appliqués sur les différentes régions
de l’image avec les canaux de couleurs RGB, HSV et Lab. Un autre extracteur de caractéristiques,
basé sur les distributions de valeurs de chaque canal du système de couleur RGB et HSV, a permis
d’atteindre des résultats similaires. Néanmoins, les méthodes basées sur la méthode d’extraction
« Scale Invariant Feature Transform (SIFT) » n’étaient pas efficaces du tout. Le réentrainement
(fine tuning) de modèles de CNN pré-entrainés permet d’atteindre de bien meilleurs résultats y
compris sur les données de test. Si on prend en compte l’exactitude et le rappel, les meilleurs
modèles utilisant "ResNet50" sont ceux associés à un classifieur constitué de deux couches de 150
neurones, un taux de decrochage (Dropout rate) de 0.3 et une régularisation "L2" (avec un taux
de régularisation égal à 0.1 ou 0.5). Ces modèles permettent d’atteindre un rappel de 86%, une
exactitude de 94% et une précision de 89% sur les données de test. Le meilleur modèle utilisant
"InceptionV3" est celui associé à un classifieur constitué de deux couches de 150 neurones, un
taux de decrochage de 0.7 et une régularisation "L2" avec un taux égal à 0.5. Ce modèle permet
d’atteindre un rappel de 87%, une exactitude de 88% et une précision de 92% sur les données de
test. A la fin, on note que les images mal classifiées contiennent des nuages, de la lumière de la
lune ou des aurores à peine visibles. Finalement, j’ai essayé de subdiviser chaque classe en sous
classes homogènes pour améliorer la classification. Malheureusement, cette étape amenant à de
nombreuses problématiques, les tentatives de classification qui s’en sont suivies a donné de très
mauvais résultats. En effet, la même étiquette a été attribuée à toutes les images.

iii

Table of Contents

1 Introduction 1

2 The University Centre in Svalbard (UNIS) and the Kjell Henriksen Observatory 2
2.1 The University Centre in Svalbard (UNIS) . 2
2.2 The Kjell Henriksen Observatory . 2

3 Camera and data description 3

4 Auroral activity 4

5 State of the art 7
5.1 Preprocessing . 7
5.2 Features extraction . 8

5.2.1 Edges and regions based methods . 8
5.2.2 Scale, rotation and translation invariant features 9

Scale Invariant Feature Transform (SIFT) for gray scale images 9
Scale Invariant Feature Transform (SIFT) for coloured images 10

5.2.3 Textures descriptors . 11
First order statistics . 12
Brightness distribution . 12
Ordinal Spatial Intensity Distribution (OSID) 14
Gray Level Aura Matrix (GLAM) . 14
Structural and geometrical approach : Local Binary Pattern (LBP) 16
Gabor wavelet decomposition . 17

5.3 Dimensionality reduction . 19
5.3.1 t-distributed stochastic neighbor embedding (t-SNE) 19
5.3.2 Uniform Manifold Approximation and Projection (UMAP) 20

5.4 Classification . 20
5.4.1 Linear regression and ridge classification . 21
5.4.2 Support Vector Machine (SVM) . 21

iv

5.4.3 K-Nearest Neighbours (KNN) . 21
5.4.4 Decision tree and random forest . 22
5.4.5 Neural Network . 22

5.5 Convolutional Neural Network (CNN) . 25
5.5.1 Principle . 25
5.5.2 Transfer learning . 26

5.6 Results obtained in different articles dealing with various contexts of classification . 28

6 Strategy 31

7 Implementation 34
7.1 Data preparation . 34

7.1.1 Structural Similarity Index (SSIM) . 35
7.2 Selection of the models . 37

7.2.1 Selection of methods without using CNN . 38
7.2.2 Selection of the CNN models . 41

7.3 Testing the CNN models . 43
7.4 Applying CNN models to homogeneous sub classes 48

8 Conclusion 50

9 Annexes 56
9.1 Annex A : Gantt diagrams . 56
9.2 Annex B : Features extraction . 58

9.2.1 Gray Level Cooccurence Matrix (GLCM) . 58
9.2.2 Steerable pyramid . 59

9.3 Annex C : Dimensionality reduction . 60
9.3.1 Isometric mapping (ISOMAP) . 60
9.3.2 Locally Linear Embedding (LLE) . 61

9.4 Annex D : Classification . 62
9.4.1 Bayesian classifier . 62

9.5 Annex E : Image samples of the created subclasses 63
9.5.1 Cloudy sky with auroras . 63
9.5.2 Cloudless sky with auroras . 64
9.5.3 Cloudy sky without aurora . 65
9.5.4 Cloudless sky without aurora . 68

v

List of Figures

2.1 The roof of the Kjell Henriksen Observatory : Optical instruments are installed
under the transparent domes . 2

3.1 All-sky image of an aurora . 3

4.1 Schematic representation of the magnetic field of the Earth [28] 5
4.2 Schematic representation of the combinations of the Earth’s and Sun’s magnetic

fields [28] . 5

5.1 Schematic representation of a circular neighbourhood of a pixel nc with a radius of
one pixel [14] . 16

5.2 Diagram of an artificial neuron . 23
5.3 Feed forward neural network . 24
5.4 CNN diagram [1] . 25
5.5 Building block of a "ResNet" model [5] . 26
5.6 Building block of the first version of the "Inception" model [24] 27
5.7 Building blocks used in the third version of the "Inception" model [25] 27

6.1 All-sky images: Images containing clouds and auroras on the first row; Images
containing auroras but no clouds on the second row; Images containing clouds but
no aurora on the third row; Images containing no aurora and no cloud on the last row 33

7.1 Diagram of the Python code . 37
7.2 False negatives . 46
7.3 False positives . 47

9.1 Gantt diagram created in the beginning of the project 56
9.2 Gantt diagram corrected at the end of the project 57
9.3 Schematic representation of the steerable pyramid 59
9.4 Blue images containing auroras and clouds . 63
9.5 Brown and green images containing auroras and clouds 63
9.6 Gray images containing auroras and clouds . 63

vi

9.7 Black images containing auroras but no cloud . 64
9.8 Dark blue images containing auroras but no cloud 64
9.9 Gray images containing auroras but no cloud . 64
9.10 Blue images containing auroras but no cloud . 65
9.11 Black and green images containing auroras but no cloud 65
9.12 Black and brown images containing clouds but no aurora 65
9.13 Brown images containing clouds but no aurora . 66
9.14 Gray images containing clouds but no aurora . 66
9.15 Light blue images containing clouds but no aurora 66
9.16 Blue images containing clouds but no aurora . 67
9.17 Dark blue images containing clouds but no aurora 67
9.18 Gray and blue images containing clouds but no aurora 67
9.19 Gray images containing no cloud and no aurora . 68
9.20 Dark gray images containing no cloud and no aurora 68
9.21 Dark blue and black images containing no cloud and no aurora 68
9.22 Dark blue images containing no cloud and no aurora 69
9.23 Blue images containing no cloud and no aurora . 69
9.24 Light blue images containing no cloud and no aurora 69

vii

List of Tables

5.1 Confusion matrix . 20

7.1 Results obtained by applying features extraction algorithm on the validation data
set . 40

7.2 Results obtained by applying different CNN on the validation data set (Results
given in percent) . 43

7.3 Results obtained by applying different CNN on the testing data set (Results given
in percents) . 44

7.4 Confusion matrix of the pretrained model "ResNet50" associated to a classifier com-
posed of two layers of 15O neurons, a dropout rate of 0.3 and a regularization “L2”
with a rate equal to 0.5 . 45

7.5 Confusion matrix of the pretrained model “InceptionV3” associated to a neural
network of two layers of 150 neurons, a dropout rate of 0.7 and a regularization
“L2” with a rate equal to 0.5. 45

viii

Chapter 1
Introduction

This internship is entitled “Auroral detection in coloured all-sky images”. It takes place in the
University Centre in Svalbard (UNIS), Norway, and it is not confidential. My supervisor at UNIS
is Ms. Partamies, professor in middle atmospheric physics.

This project is a continuation of experiments to automate the classification of all-sky images in two
classes: “Aurora” or “No aurora”. This experiment was especially developed on grey scale images
with image processing and classification methods. The main idea is to improve the existing results
thanks to coloured images and Deep-Learning methods.

This project could help to make an alarm when there is an aurora and also help to better understand
the auroral activity. Indeed, the models of auroral activity tend to be improved throughout the
years. The aim is to miss the least number of auroras. Therefore, we will prefer a high rate of
false alarms than a high rate of false negative.

The aim is to improve the automatic detection of auroras. The idea is to classify all images in two
different families: “Presence of aurora” and “Absence of aurora”.

A camera Sony a7s installed in the Kjell Henriksen observatory, close to Longyearbyen (78.15◦N
16.04◦E.), allows to take colour all-sky images at regular time intervals. The technical details of
this camera will be further described.

In total, more than one million images have been taken for three winters (from 2019 to 2022).
Among the images that have been taken during the winter 2019 – 2020 and in January and
February 2019, 37 384 images have been labelled in two classes by Ms. Partamies: “Aurora”
and “no aurora”. Thus, the detection of auroras appears as a supervised learning for a binary
classification. There is a time resolution of six minutes between each image.

To work on this project, I have access to a computer at UNIS containing the described dataset. I
work with Pycharm and python libraries (like “OpenCV”, “ScickitLearn”, “Keras”, “Pandas” and
“Tensorflow”).

I will first present the university, the Kjell Henriksen Observatory and the camera Sony a7s. Next,
I will deal with the explanation on the auroral activity. Then, I will develop a state of the art of
the different existing method to achieve the classification. Then, on the basis of the state of the
art, I will develop a strategy to implement and test the methods. Eventually, I will conclude about
the obtained results.

1

Chapter 2
The University Centre in Svalbard (UNIS)
and the Kjell Henriksen Observatory

2.1 The University Centre in Svalbard (UNIS)
The University Centre in Svalbard (UNIS) has been created in 1993 in Longyearbyen on the
Spitzberg island in the Svalbard archipelago, in Norway. It is located at 78 degrees of latitude
north and is the northernmost university. Longyearbyen is plunged in the polar night for four
months each year. The director is Jøran Moen. The university depends on the universities of
Tromsø, Bergen, Oslo and Trondheim. The disciplines taught are arctic geology, arctic geophysics,
arctic biology and arctic technologies.

2.2 The Kjell Henriksen Observatory
The Kjell Henriksen Observatory (Figure 2.1) is located near Longyearbyen. It has been established
in 1978 by the professor Kjell Henriksen [7]. There are around thirty radio and optical instruments
belonging to universities or research centres worldwide like UNIS, the University of Oslo, the
College of London, the National Institute of Polar Research in Japan, the Kyoto university, the
Italian Space Agency, the Polar Institute of China, and lots of other ones. All these instruments
are used for the research on middle and upper atmosphere.

Figure 2.1: The roof of the Kjell Henriksen Observatory : Optical instruments are installed under
the transparent domes

2

Chapter 3
Camera and data description

The camera Sony a7s allows to take colour all-sky images at regular time intervals. The following
information are instrument specifications :

Time resolution: 10 − 30 seconds

Exposure time: 4 seconds at night

Camera: Sony a7s

Lens: Sigma 8mm f/3.5 EX DG Circular Fisheye, full 180◦ FOV

Spatial resolution: 12M pixels (8.4 um × 8.4 um pixels)

Spectral resolution: RGB

The obtained images are as follows (Figure 3.1) :

Figure 3.1: All-sky image of an aurora

In the beginning of this project, I have access to 37 384 images from the winter 2019-2020 and
January and February 2019 manually labeled by Ms. Partamies in two classes: "Aurora" and "no
aurora". These images have also been labeled in two other classes: "Cloudy" and "Cloudless".
There is a time resolution of six minutes between each image.

At the end, I have access to 14 775 additional labeled images from January 2022.

3

Chapter 4
Auroral activity

I will describe here the auroral activity [28].

The sun emits particles like protons, electrons and ions. There are three types of solar emissions :
the solar wind, the Corona Mass Ejection (CME) and the solar flares.

The solar wind consists in continuous charged particle stream with varying speed and low energy.
These streams come from coronal holes which are areas with low density and low magnetic field.
The particles are ejected along opened magnetic fields lines. The origin of the streams are in the
polar regions when there is a low-level of solar activity. When the solar activity is intensifying,
the streams can come from lower latitudes. Then, the emitted streams are heading towards lower
density areas and form a cone. The slow solar stream has a speed of 300 kilometers per second.
The high speed solar stream has a speed between 600 and 900 kilometers per second. The streams
are not continuous in the space and form thin strands. Because the sun is rotating, the streams
of the solar wind describe a spiral. The high speed wind happens often when the solar activity is
minimal.

The Corona Mass Ejections (CME) are caused by the solar magnetic fields variations. Fragments
of the sun’s surface are ejected and take the form of solar plasma clouds. Numerous particles are
ejected with a maximum speed of 1600 kilometers per second. The CME with the highest speed
causes a shock wave in the solar wind, which is accelerated by this phenomenon. Then, these shock
waves are responsible for the impact of particles on the earth. The CMEs happen often when the
solar activity is maximal.

The solar flares are due to localized areas which are magnetically unstable and induce charged
particles accelerations by modifying the magnetic fields. Moreover, a part of the magnetic energy
is released by short emissions of X rays and extreme UV. Electrons and ions are also ejected. The
most dangerous particles are the Solar Energetic Protons (SEP). They combine a high speed and
great mass. They can reaches the half of the speed of light.

When the solar wind is approaching the earth, the particles of the solar wind arrive with a super-
sonic speed compared to the sound velocity in the plasma. The magnetosphere of the earth acts
like a shield (Figure 4.1). It induces a bow shock upstream of the magnetopause, the outermost
layer of the magnetosphere. This bow shock is located about 80 000 kilometers from Earth and
is 100 kilometers thick. The bow shock slows down the solar wind. It also heats and disturbs it.
Eventually, the solar wind reaches the magnetopause at an altitude of 64 000 kilometers. The solar
wind compresses the magnetopause towards the earth and creates a magnetosphere distortion. The
majority of the solar wind streams are deviated around the earth.

4

Figure 4.1: Schematic representation of the magnetic field of the Earth [28]

The solar magnetic field changes the polarity every eleven years, but the solar wind and the
electromagnetic emissions can variate at all time scales. According to the relative direction of the
earth’s and the sun’s magnetic field, the magnetic fields of the Earth and Sun can recombine (Figure
4.2). If the magnetic field of the sun is parallel and opposed to the terrestrial magnetic field, these
magnetic fields combine. In this case, the magnetopause opens and the solar particles can enter
the atmosphere. The particles can also enter the external magnetosphere through the magnetotail,
where the magnetic field is weak. In this case, the particles are guided to the earth and enter the
internal magnetosphere. Even without reconnection, particles can come in the atmosphere at the
polar cusps, where the magnetosphere is weak.

Figure 4.2: Schematic representation of the combinations of the Earth’s and Sun’s magnetic fields
[28]

Once a particle has entered the magnetosphere, it is trapped. Then, the particles go back and
forth bouncing from a pole to the other one and following the magnetic fields lines. This region
along the magnetic fields lines is named the "Van Allen Radiation Belts".

Then, if the particles have enough energy, they will enter the atmosphere. The particles can also
be stored in the magnetotail, in the plasma sheet.

5

The magnetic reconnection creates a magnetic storm which disturbs the terrestrial magnetic field.
During this storm, the magnetotail is enlarged. It reinforces the electric fields in the magnetosphere.
Therefore, the charged particles will gain energy and enter the atmosphere.

The substorms appear when the magnetotail is unstable and there are strong electric currents. In
this case, a part of the electric current of the magnetotail is short-circuited through the ionosphere.
Then, the electrons stored in the magnetosphere are propelled to the thermospere, the ionosphere
and the high mesosphere (between 80 and 350 kilometers above sea level). Eventually, once
stored in the atmosphere, the charged particles collide with oxygen and nitrogen atoms. These
collisions release photons with different colors. The oxygen atoms produce green and red lights.
The nitrogen atoms release blue light. The auroral substorms can appear frequently during these
previously described magnetic storms but also during small disturbances caused by the solar wind
variations.

The auroras occur mainly in the auroral ovals centered around the magnetic poles. These ovals
change in depending on the solar activity. An auroral oval is four times wider on the night side.
There still are auroras on the day side which are weaker because there are created by particles
which have been previously caught in the magnetosphere.

There are also polar cap auroras which correspond to weak auroras that appear through the auroral
ovals when the electrons comes through the magnetotail. Auroras happen in the thermosphere
and exosphere, between 100 and 500 km altitude, while cloudy phenomena happen under 12 km
altitude. It corresponds mostly to the troposphere (until 10 km altitude). Therefore, auroras are
easily masked by different types of clouds. Clouds can also significantly change the aspect of an
image containing a visible aurora. A cloudy sky can appear white, yellow or even dark. In the
first case, the light reflected from the moon whitens the clouds. The colour yellow is caused by
the light pollution. A dark sky is linked to high clouds. It can be distinguished from a sky that is
not cloudy by the absence of stars.

Moreover, the light pollution, the moonlight and the sunlight (during the sunset and the sunrise),
can create some confusions.

All auroral observers, whether they are tourists or scientists, are interested in knowing when there
is aurora in the sky. Because we take millions of images every winter season it is a challenge to
find the interesting times by visual inspection, and therefore, an automated routine is needed.

6

Chapter 5
State of the art

The image classification can be done in two ways. A first solution is to proceed with a prepro-
cessing step, a features extraction, a dimension reduction, and finally, a classification step. Another
solution is to replace these steps by a Convolutional Neural Network (CNN). I will further develop
on the previously mentionned phases. Some classifiers and all the CNN require to choose hyper-
parameters. Some methods have been used in very similar contexts while others have been used
in different contexts. Indeed, some methods were applied to proceed to a classification into several
classes containing various types of auroras. Sometimes, the methods have been applied on gray
scale images. Moreover, some articles give results obtained on data sets which do not contain
images with clouds, moonlight, sunlight or artificial light. In our case, we deal with a binary
classification on colored images containing clouds, moonlight, sunlight and artificial light.

First, I will give an explanation about the methods mentioned in some articles in the context of
the auroral detection and classification. Some other associated methods which have not especially
been used in this context will be described in annexes (B, C and D). Then, I will synthesise the
various contexts of classification and their linked results given in the previous studies.

5.1 Preprocessing
The preprocessing step can contain one or several image processing’s phases. Some of the prepro-
cessing phases can be systematically used while other preprocessing phases depend on the features
extraction.

All images must have the same orientation. In our case, all images have the same orientation and
north corresponds to the top of the picture and east to the left of the picture.

One of the main steps is to choose the color system. The most famous color systems are the HSV
(Hue Saturation Value) system and the RGB (Red Blue Green) system. Another possibility is to
use the Lab color system. "L" corresponds to the perceived brightness, "a" is the coordinate on the
"green-red" axis and "b" is the coordinate on the "blue-yellow" axis. On the contrary to the RGB
and HSV systems, the advantage of the Lab system is that a variation of the values in the space
corresponds to a proportional change of the perceived color. Indeed, in the RGB color system, if
R, G and B have a similar value, the pixel is gray. If these values are close to 0, a small variation of
one of the pixel’s value will change the color. However, if these values are high, the same variation
of one of the pixel’s value will not change the gray appearance of the pixel. This choice highly
depends on the chosen features extraction.

7

The available images have black corners which do not contain interesting information. However,
these black corners induce a bias, especially if we want to compute the global statistical descriptors.
To remove the black corners, we can crop the image. It also removes the parts of the image which
correspond to low elevation angles. Therefore, if auroras are contained in these parts of the image,
it can reduce the performance of the models.

Another possibility to remove the black angles is to apply the log polar or polar transformation.
These transformations allow to transform each radius into an image row. Therefore, the black
pixels (coming from the black corners) are confined on the right of the obtained image. Then, we
can crop this obtained image.

We can also choose to reduce the noise on each image by computing the mean value of the pixels
contained in a small window on the black corners and subtracting this value from all pixels [22].

To remove the noise, we can also use low-pass filters, like the median filter.

A possible preprocessing step is the normalisation of the pixels values. First, the values that
are lower than a given percentiles (0.5 for example) are replaced by the value corresponding to
this percentile. The values that are higher than another defined percentile (99.5 for example) are
replaced by the value corresponding to this percentile. Then, the pixels values can be normalised.

We can reduce the size of the images to allow a faster training of the models.

Eventually, we could try to increase contrast by stretching the histograms or by reducing the
number of bits, and see if it can improve the results. However, this method has not been used in
the articles.

In practice, the preprocessing phases can be included in the features extraction methods. According
to the chosen features extraction, we can apply some of the preprocessing steps beforehand.

5.2 Features extraction
The main idea is to transform a two or three dimensional image into a one dimensional vector by
extracting the most relevant information. Then, the one dimensional vector can be directly input
in a classifier to obtain a predicted label. We can also reduce dimensions of this vector before the
classification step.

Many features extraction methods have been used to analyse images containing auroras. I will
further develop explanations of some of them. However, these methods have often been used to
classify different type of auroras or to detect auroras on gray scale images. In some articles, images
containing hardly recognizable auroras, sunlight, moonlight or clouds have been removed. I will
also describe in annexes some methods which are similar to the other described methods and which
have also been used for image classification but not especially for aurora detection or classification
(Annex B).

5.2.1 Edges and regions based methods
To describe our images, we could use edges descriptors. For example, an article [21] proposes to
detect edges and to describe them thanks to the Fourier descriptor. This solution was used to

8

classify images which contain auroras into different categories. However, it would be difficult to
extend the method to the binary classification between images with and without auroras. Indeed,
this method implies that there are relevant edges to detect in each image.

Another solution is to use the hierarchical trees to analyse images [19]. The first step consists
in partitioning the images into previously defined gray levels. Then, the regions are defined on
the basis of these different gray levels. The regions contours can be described thanks to different
methods. Eventually, we can compute the tree in which each node represent a contour with its
corresponding descriptor. The child nodes correspond to contours of area contained in the current
region. Therefore, each image can be represented by a tree and these trees can be compared to
each other. In our case, we have colored images and the idea is to use this advantage to improve
the classification. Moreover, as for the previously described method, this idea is based on the idea
that the images contain regions with an important signification. Indeed, it is used to classify the
different types of auroras.

5.2.2 Scale, rotation and translation invariant features
To extract features, we can decide to detect salient points and extract features in the regions
containing these points. In our case, the extracted features have to be scale, rotation and transla-
tion invariant. A famous method meeting these criteria is the Scale Invariant Feature Transform
(SIFT). This method has other advantages than the scale or rotation invariance. It is robust to the
partial occlusions. However, even if it is robust to brightness changes, it is not the best brightness
invariant descriptor [14].

Scale Invariant Feature Transform (SIFT) for gray scale images

The Scale Invariant Feature Transform begins with the salient points detection.

The first step consists of a scale space construction. To do that, we apply Gaussian filters with
different sizes to the images. Then, we sub-sample one of the filtered images and we apply the
same filters. This operation can be done a chosen number of times.

We need to define the number of octaves m which corresponds to the number of times an image is
sub-sampled. Therefore, it also matches the number of sizes of the resulting images. Given σ the
standard deviation of the smallest Gaussian filter, we need to decide the number of scales n which
corresponds to the number of applied filters before applying a Gaussian filter with a standard
deviation of 2σ. The value k = 21/n is the value by which the standard deviation of a filter is
multiplied to obtain the standard deviation of the following filter. The number of images for each
octave is given by the number l = n + 3 = 5.

We can, for example, choose m = 3, n = 2, k =
√

2 and l = 5. The second step consists in
detecting the extrema in the Difference of Gaussian (DoG).

Given a selected octave, we can compute the difference between two consecutive filtered images.
The result is called the Difference of Gaussian (DoG). Then, we stack the DoG for a given octave.
Eventually, we can compare each pixel to its eight neighbours of the same scale and the nine
neighbours of each neighbour’s scale. If the considered pixel is the smallest or the greatest among
all its neighbours, it is considered as a salient point.

9

A salient point is composed of the coordinates x and y and a corresponding scale (scale where the
extremum has been found).

The final step of the salient point detection consists of the removal of the instable points. It can
be points with a low contrast or localised on edges with a small curvature.

Then, we can compute the orientation for each salient point.

To do that, we first consider a neighbourhood for each salient point with a dimension of 3σ where
σ corresponds to 1.5 times the scale of the considered salient point.

Then, we can compute the amplitude a and the orientation θ of the gradient of each pixel (xi, yi)
in the neighbourhood.

Given an image V filtered at the scale of the salient point. we know that :
a(xi, yi) =

√
(V (xi + 1, yi) − V (xi − 1, yi))2 + (V (xi, yi + 1) − V (xi, yi − 1))2

θ(xi, yi) = arctan(V (xi, yi + 1) − V (xi, yi − 1)
V (xi + 1, yi) − V (xi − 1, yi)

)

Then, each orientation is weighted by the amplitude. Eventually, all the obtained orientations
are weighted by a Gaussian window (corresponding to the neighbourhood). It allows to give less
importance to the pixels which have low gradient amplitude or which are localized at the image
edges.

The final phase is to create histograms of the orientations. An orientation is considered when its
corresponding value exceeds eighty percent of the most represented direction.

The last phase of the SIFT algorithm is the computation of the descriptor vectors of each salient
point.

We consider a neighbourhood of 16 × 16 pixels around each salient point. We divide this area into
16 blocks with a size of 4 × 4. Then, we can compute an histogram of the (eight) directions in
each block. In the end, we obtain a vector with a value for each direction of each block.

Scale Invariant Feature Transform (SIFT) for coloured images

We have coloured images and we can apply the SIFT method on each channel. To do that, we
can use different color systems. Nevertheless, we want to achieve a partial illumination invariance.
If we use the HSV color system, we obtain a scale and shift invariant descriptor, with respect to
light intensity. However, it would be partially invariant to light color changes [14].

Another solution is to use the Opponent SIFT. The Opponent color system is linked to the RGB
system as follows :

 O1
O2
O3

 =

R−G√

2
R+G−2B√

6
R+G+B√

3

O3 only includes intensity information. O1 and O2 contain colors information but also take relative

10

brightness changes into account. If SIFT is applied to the channels O1 and O2, it will be insensitive
to absolute intensity but it will take relative brightness into account. Therefore, this system would
be suitable for our images.

Another system which could be appropriate is the Transformed color system. The Transformed
color system is linked to the RGB system as follows :

 R′

G′

B′

 =

R−µR

σR
G−µG

σG
B−µB

σB

With µR, µG, µB the mean values

and σR σG σB the standard deviations

If SIFT is applied to those channels, it will be scale invariant and invariant to changes in light,
color and arbitrary effects.

Another solution is to give different weights for each channel or to create a linear combination
between the three channels of the RGB color system. For example, we can apply SIFT to the
channels G and to the linear combination 2G-R-B. It allows to give more importance to the green
channel. Indeed, aurora images often contains green color.

An article [14] relates results for those methods. The best results were obtained for the Opponent
SIFT. Good results were also obtained when SIFT was applied to the channel G and to the linear
combination 2G-R-B. Among the three best methods, we can also consider the Transform SIFT. On
the contrary, SIFT only applied to the linear combination 2G-R-B does not offer a good accuracy.

5.2.3 Textures descriptors
There are lots of different texture analysis methods. We will see the benefits and drawbacks of a
few of them.

First of all, we can compute statistical analysis of the different values of each channel. The first
order statistics are descriptors that take into account one pixel at a time. Therefore, it does not
consider the spatial distribution of the different gray levels.

To consider the global texture, a possibility is to divide the image into different patches before
computing descriptors. We can consider the brightness distribution in north-south and east-west
direction and the Ordinal Spatial Intensity Distribution (OSID). Contrary to the SIFT method,
the OSID method is robust against complex brightness changes [20] [26].

We can also compute second order statistics like the Gray Level Cooccurence Matrices (GLCM)
and the associated Haralick parameters [31] (described in annex B) [18] or the Gray level Aura
Matrices (GLAM) [13] [21] [29] [31].

The Local Binary Pattern (LBP) is considered as a geometrical and structural approach [14] [20].

Eventually, a common approach in aurora images detection is to use sets of filters. Among the
numerous possible methods, there are the Laplacian Pyramid, the Steerable Pyramid [6] [12]

11

(described in annex B) and the wavelets decomposition with orthogonal (Daubechies) and non-
orthogonal (Gabor) wavelets basis [10] [23].

The Laplacian Pyramid does not take into account the orientations. Therefore, it will not allow
to keep all information about oriented and elongated structures.

The orthogonal wavelets form a basis which does not respect the Nyquist criterion. It induces
aliasing.

This noise in the sub-bands can be avoided by using non-orthogonal wavelets basis. However this
type of wavelets basis induces redundant information. Therefore, we have to choose carefully the
parameters to reduce these redundancies.

Another solution is to use the Steerable Pyramid [6] [12]. It allows to take into account the oriented
and elongated structures. Moreover, it provides a non-orthogonal decomposition which allows to
avoid aliasing.

First order statistics

The mostly used statistical descriptors are the minimum, the maximum, the mean and the standard
deviation. However the first three descriptors are sensitive to the absolute brightness changes,
which depends on the moonlight, the sunlight or the camera for example. The standard deviation
is impacted by the relative brightness changes. Nevertheless, it is untouched by the absolute
brightness changes [22] [23].

Moreover, the previously mentioned descriptors are global descriptors. Therefore, they do not
bring any information about the images global structure.

Brightness distribution

An example of local intensity descriptors is the brightness distribution in (magnetic) north-south
and east-west directions. This means first to place have the north-south axis along the vertical
axis, and the west-east axis along the horizontal axis, which is already the case for our images. If
we use the Cartesian coordinate system, the images are circular. We need to adapt by adding a
normalisation [23].

Given an image I and I(x, y) the pixel corresponding to the column x and the row y, the average
brightness in each row corresponds to :

P (y) = 1
CE(y) − CW (y) ×

CW (y)∑
x=CE(y)

I(x, y)

CE(y) : column′s number of the eastern most pixel, for the row y

CW (y) : column′s number of the western most pixel, for the row y

Therefore, the brightness distribution in north-south direction is defined by the following vector :
f1 = [P (0) P (1) ... P (ymax)]

12

The average brightness in each column corresponds to :

Q(x) = 1
LN(x) − LS(x) ×

LS(x)∑
x=LN (x)

I(x, y)

LN(x) : row′s number of the northern most pixel, for the column x

LS(x) : row′s number of the southern most pixel, for the column x

Therefore, the brightness distribution in north-south direction is defined by the following vector :
f 2 = [Q(0) Q(1) ... Q(xmax)]

Then, we can compute a distance between two vectors :
S = min

k
||f (i) − rot(f (j), k)||

The rotational operator rot(f, k) corresponds to a circular shift of vector elements by k positions.
It is justified by the invariance in the north-south direction. It allows to obtain a short distance
between an image containing a bright arc in the north and another one containing a bright arc in
the south.

Therefore, to find the minimum distance, we have to compute for each pair of vectors a lot of
distances, corresponding to the number of rows for the north-south direction (and corresponding
to the number of columns for the east-west direction). It induces a large number of calculations
and a long computing time.

Moreover, it induces an impossibility to reduce dimensions. Indeed, a dimension reduction corres-
ponds to a linear conbination between the vector elements. Then, if the we use rotated vectors,
the dimension reduction can change the meaning of these vectors.

To solve the previously mentioned problems about the computing time and the impossibility to
reduce dimension, we could prefer solutions which do not involve these issues. For example, we
can apply a polar or log-polar transformation before computing the average brightness in each
column. It does not correspond anymore to a brightness distribution in the north-south direction,
but to the brightness of the many concentric circles of different sizes forming the images. We can
consider that the small circles in the middle of the images do not have the same meaning as the
wide circle on the outlines of the images. In this case, the circular shift of the vectors are not
justified anymore.

However, computing the average brightness in each line after applying a polar or log-polar trans-
formation corresponds to the computing of the brightness average of each circle radius. In this
case, a circular shift of the vectors is justified because all radii have the same meaning.

In our project, we have colored images. Therefore, we can extend these types of calculation to
other parameters than the brightness of the gray scale images, like the hue, the saturation and the
value for example.

13

Ordinal Spatial Intensity Distribution (OSID)

A previously detailed method, SIFT, is robust to different variations or distortions. However, a
better robustness against complex brightness changes can be achieved with the Ordinal Spatial
Intensity Distribution (OSID) [20] [26].

The OSID method corresponds to a two-dimensional histogram where the pixel intensities are
grouped in the spatial space as well as the ordinal space.

To proceed to the OSID we first have to pre-process the images. These images are smoothed with
a Gaussian filter to remove the noise.

Then, we can detect intensity extrema and create local patches around these extrema to apply the
rest of the algorithm to each patch. However, in our case, an article [20] proposes to use the whole
image.

The first step consists in binning the pixels in the ordinal space. The pixels are binned in a certain
number of bins where each bin contains pixels with similar intensities. If there are four hundred
intensity levels and five bins, we will have eighty intensity levels for each bin. It will allow to
obtain complex brightness changes invariant features.

The second step consists in binning the pixels in the spatial space. The image is divided in a
certain number of angular sectors. This subdivision is appropriate for circular images. The pixels
are labelled according to their area. It will allow to capture the structure information.

Eventually, we can create a two-dimensional histogram. The X-axis indicates the pixel intensity
distribution. The Y-axis indicates the spatial area. Then, the rasterization consists in transforming
the two-dimensional histogram into a one-dimensional vector. At the end, this vector is normalised.

Gray Level Aura Matrix (GLAM)

I will describe here the Gray Level Aura Matrices (GLAM) [13] [21] [29] [31].

We consider an image X as a m × n matrix. We set :
S = {s = (i, j)|0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}

We define the neighbours system N = {Ns, s ∈ S} where Ns corresponds to the neighbourhood of
the pixel s.

For s, t ∈ S, s /∈ Ns and s ∈ Nt if and only if t ∈ Ns.

The pixel s is not included in its own neighbourhood and the neighbourhood is symmetrical.

The neighbourhood of the pixel s is described as follows :
Ns=(i,j) = {r = (k, l) ∈ S|0 < |(k − i)2 + (l − j)2| ≤ d}

with d : a chosen distance

Then, we define the Aura concept. Let A, B ⊆ S, we define the aura of A with respect to B :
Vb(A, N) = ∪s∈A(B ∩ Ns)

14

It corresponds to pixels included in B and which are the neighbours of all the pixels contained in
A.

Let the aura measure of A with respect to B :
m(A, B) =

∑
s∈A

|B ∩ Ns|

where |A| is the total number of pixels contained in A

Because the neighbourhood system is symmetrical, we can write m(A, B) = m(B, A).

Let J = {Si|0 ≤ i ≤ G − 1} a subdivision of the S, where G is the number of gray levels.

The aura matrix of J is :
A(J) = [m(Si, Sj)]

where m(Si, Sj) corresponds to the aura measure between Si and Sj, 0 ≤ i, j ≤ G. We know that
each pixel s ∈ S has a gray level xs corresponding to an integer between 0 and G − 1.

We define subsets of S corresponding to the different gray levels Sg = {s ∈ S|xs = g} where
g = 0, 1, ..., G − 1.

If m(A, B) is low, it indicates that the subsets A and B are clearly separated.

Then, we normalise the Aura matrix to have
G−1∑
i,j=0

a(Si, Sj) = 1

To compute the aura matrices, we first need to compute the gray levels subsets.

Then, we compute m(Sg, Sg′) where g, g′ are gray levels of the previously defined subsets.

We set each element of the A matrix (A = [m(Si, Sj)]) to 0. Next, for each pixel s, we define its
gray level g, and we increment m(Si, Sj) for each pixel contained in the neighbourhood of s and
with a gray scale g′.

We use the symmetry to reduce the computing time.

Eventually, we compute the similarity measure between two images. Let X1 and X2 two gray scale
images and their associated Aura matrices : A1 = [a1(Si, Sj)] and A2 = [a2(Si, Sj)].

The similarity between them is computed as follows :

d(A1, A2) =
G−1∑
i,j=0

[a1(Si, Sj) − a2(Si, Sj)]2

Because the neighbourhood is considered as symmetrical, we cannot catch the anisotropic tex-
tures. To solve this problem, we can apply a shiftable multi-scale transformation which allows
to decompose the image into different spatial frequency bandwidths and to divide each of these
frequency bandwidth into different orientations [17]. Therefore, we can construct a steerable pyr-
amid (described in annex B), a shiftable multi-scale transformation detailed later in this report,
and apply the GLAM algorithm to each level of the pyramid.

15

Let B0, B1, ..., Bk−1 the normalised gray level aura matrices steerable pyramid, A = [B0, ..., Bk−1].

A Basic Gray Scale Level Aura Matrix (BGLAM) corresponds to GLAM by considering only one
pixel in the neighbourhood of each pixel. It is preferred to other types of GLAM because two
images are identical if and only if their BGLAM are identical.

Structural and geometrical approach : Local Binary Pattern (LBP)

The Local Binary Pattern (LBP) is a gray-scale invariant texture measure. The main idea is to
create a binary code to describe the local texture [14].

Given a pixel (xc, yc) with a gray level gc and P neighbours, we can define the LBP code :

LBP (xc, yc) =
P −1∑
p=0

S(gp − gc) × 2p

with gp : the gray level of the neighbour p

and S(x) = 0 if x < 0, else S(x) = 1

Then, we can obtain 2P possible values for a given pixel. Then, we can compute a histogram
counting the obtained values for all pixels.

Figure 5.1: Schematic representation of a circular neighbourhood of a pixel nc with a radius of one
pixel [14]

If the defined neighbourhood is a circle with a radius of one pixel (Figure 5.1), we obtain the
following formula:

LBP = S(n0 − nc) × 20 + S(n1 − nc) × 21 + S(n2 − nc) × 22 + S(n3 − nc) × 23

+S(n4 − nc) × 24 + S(n5 − nc) × 25 + S(n6 − nc) × 26 + S(n7 − nc) × 27

This classic LBP algorithm (with P = 8 neighbours) gives a result for each pixel of the image.
There are 2P = 28 = 256 possible values. Then, we can create a histogram with 256 values,
counting the number of pixels corresponding to each value. If we apply this algorithm to the three

16

channels of the colored images, we obtain a final feature with of 768 elements. A possibility to
reduce the size of the final vectors is to use the Orthogonal Local Binary Pattern Combination
(OLBPC). It can be computed as follows :

OLBPC = [OLBP1 OLBP2]

OLBP1 = S(n0 − nc) × 20 + S(n2 − nc) × 21 + S(n4 − nc) × 22 + S(n6 − nc) × 23

OLBP2 = S(n1 − nc) × 20 + S(n3 − nc) × 21 + S(n5 − nc) × 22 + S(n7 − nc) × 23

It allows to create two histograms with 24 = 16 components. The final features contains 32
elements. If we apply it to the three channels, we obtain a final feature vector with 96 elements.

Eventually, we can apply the LBP algorithm directly to the image or divide the image into areas
and apply the LBP algorithm to each area. In two articles [14][20], they divided the image into
3 × 6 = 18 areas. It allows to obtain local and global information. It gives information about the
rotation invariant patterns. This descriptor is also robust against brightness changes.

Gabor wavelet decomposition

The wavelets decomposition allows to obtain a multiresolution representation. On the basis of this
decomposition, we can compute features vectors [10] [23].

The mother Gabor wavelet can be written as follows :

g(x, y) = (1
2πσxσy

e
− 1

2 (x2
σ2

x
+ y2

σ2
y

)+2πjW x
)

σx and σy : the standard deviations

W : the modulation frequency

The Fourier transform of the previous wavelet is :

G(u, v) = e
− 1

2 [(u−W)2

σ2
u

+ v2
σ2

v
]

σu = 1
2πσx

and σv = 1
2πσy

A class of similar wavelets can be created by dilatation and rotation of this mother wavelet in the
frequency domain :

gmn(x, y) = a−mG(x′, y′)

x′ = a−m(xcos(θ) + ysin(θ))

y′ = a−m(−xsin(θ) + ycos(θ))

θ = nπ

k
and k : the number of orientations

a−m : the scaling factor

These wavelets are filters used as points and lines detectors with adaptive scales and orientations.

17

The non-orthogonality of the wavelets basis induces redundant information in the filtered images.
Therefore, we have to choose the parameters to reduce the redundancy.

The parameters are chosen on the basis of the following values :

Ui and Uh : the center frequencies of the lower and upper frequencies wavelets

k : the number of orientations

S : the number of scales

The parameters are chosen as follows :

a = (Uh

Ui

)− 1
S−1

σu = (a − 1)Un

(a + 1)
√

2ln(2)

σv = tan(π

2k
)(Uh − 2ln(σ2

u

Uh

))(2ln(2) − (2ln(2))2σ2
u

U2
h

)− 1
2

W = Uh and m = 0, 1, ..., S − 1

With this parameters, the Gabor filters overlap until the half peaks levels. We still have to choose
the parameters S, K, Uh and Ui.

To avoid sensitivity to absolute intensity changes, we have to choose the parameters so that we
obtain G(0, 0) = 0.

Given an image I(x, y), the Gabor wavelets transform for a specific orientation and a specific scale
is:

Wmn(x, y) =
∫

I(x1, y1)g∗
mn(x − x1, y − y1)dx1dy1

The mean µmn and the standard deviation σmn of the magnitude of the transform coefficients are
computed as follows:

µmn =
∫∫

|Wmn(x, y)|dxdy

σmn =
√∫∫

(|Wmn(x, y)| − µmn)2dxdy

These previously mentioned parameters allow to create a features vector:
f = [µ00 σ00 µ01 ... µ35 σ35]

The distance between two features can be written as follows:
d(i, j) =

∑
m

∑
n

dmn(i, j)

18

dmn(i, j) = |µ
(i)
mn − µ(j)

mn

α(µmn) | + |σ
(i)
mn − σ(j)

mn

α(σmn) |

α(µmn) and α(σmn) : the features standard deviation

Eventually, feature vectors are computed on the basis of wavelets decomposition. The Gabor
wavelets are non-orthogonal. It allows to avoid aliasing because the Nyquist criterion is met.
However, it induces information redundancy and the parameters have to be adapted to reduce it.

5.3 Dimensionality reduction
The dimensionality reduction is used to improve the efficiency. It allows to achieve better results,
reduce computing time and storage need. It can also allow to obtain a three-dimensional visualisa-
tion. It removes the noise in the data by keeping only the most important features and removing
the redundant ones. Moreover, it avoids overfitting. To reduce dimensions, we can select the most
interesting variables. Another solution is to extract characteristics by creating relevant variables.
There are linear and non linear dimensionality reduction. The Principal Components Analysis
(PCA) is a well known linear dimensionality reduction. The aim is to find the dimensions which
have the greatest variance in the data. Then, we can represent each point along these axes. The
main problem of the linear dimensionality reduction is to only consider the Euclidean distances.
However, two points can be close to each other according to the Euclidean distance but distant
from each other if we consider the distance by following the surface defined by the points. The
swiss roll illustrates this problem. Some algorithms based on neighbour graphs allow to consider
the geodesic distances, like the isometric mapping (ISOMAP) [27] (described in annex C), the t-
distributed stochastic neighbor embedding (t-SNE) [9] and the Uniform Manifold Approximation
and Projection (UMAP) [11].

5.3.1 t-distributed stochastic neighbor embedding (t-SNE)
The main idea of the t-SNE algorithm is to consider the geodesic distance. First, we compute
the similarities among points in the initial space [9]. For each point Xi, we center the Gaussian
distribution around this point. Then, we measure for each point Xj (i ̸= j) the corresponding
density under the Gaussian distribution previously defined. Then, we can normalise this computed
density. In fact, we compute the normalised density as follows :

pij = e
−||Xi−Xj ||2

2σ2∑
k ̸=l e

−||Xk−Xl||2

2σ2

with σ : the standard deviation

The standard deviation is defined on the basis of a value called "the perplexity", which corresponds
to the number of neighbours we want to consider for each point. This value is chosen by the user
and allows to estimate the standard deviation of the Gaussian distributions defined for each point
Xi. The second step consists in creating a space of lower dimension in which we will represent our
data. This new representation is named Y and Y = {Y1, ..., Yn}. We first randomly distribute the

19

data in this new space. Then, we compute the similarities among the points by using a t-student
distribution and not a Gaussian one.

qij = (1 + ||Yi − Yj||2)−1∑
k ̸=l(1 + ||Yk − Yl||2)−1

Eventually, we want that the similarity measures qij coincide with the similarity measures pij.
We can compare the similarity measures thanks to Kullback Leibler measures for example. This
measure can be minimised by using the gradient descent.

5.3.2 Uniform Manifold Approximation and Projection (UMAP)
The UMAP algorithm is very similar to the t-SNE algorithm [11]. However, the UMAP algorithm
is faster and captures the global structure. In the t-SNE algorithm, the standard deviation is
the same for all points. In the UMAP algorithm, the standard deviation is chosen for each point
according the distances of the K nearest neighbours. This K is the first parameter to choose to
use the UMAP algorithm. We also need to choose the smallest distance between two points in the
new space.

5.4 Classification
We can use a binary or a multi class classification. There are lots of algorithms of supervised
classification : Support Vector Machine (SVM) [4], K-Nearest Neighbours (KNN), Bayesian clas-
sifier (described in annex D), decision tree and random forest [2]. Each method has advantages
and disadvantages. Each model can induce "underfitting" or "overfitting". "Underfitting" happens
if the model is not adapted enough to the data. "Overfitting" happens if the model is perfectly
adapted to the training data and cannot be generalized to other data.

At the end of the classification, we obtain a confusion matrix (Table 5.1).

Table 5.1: Confusion matrix

On the basis of this confusion matrix, we can compute the precision P , the recall R and the
accuracy A.

P = TP

TP + FP

R = TP

TP + FN

A = TP + TN

TP + TN + FN + FP

In our case, we want to minimize the False Negative (FN) rate. Therefore, we prefer to improve
the Recall rather than the precision. Obviously, we also want to improve the accuracy.

20

5.4.1 Linear regression and ridge classification
I will describe here the linear regression and the ridge classification [3] [16].

Let N inputs vectors fi ∈ RF corresponding to features vectors and N associated labels yi. The
linear regression enables to find the weights ω ∈ RF which minimize the cost function CLS. This
function depends on the differences between the the real labels yi and the predictions ωT fi :

CLS(ω) = 1
N

N∑
i=1

(yi − ωT fi)2

If the number of features F is close to the number of inputs N , the weights can be perfectly
adapted to the training data and give bad results on the validation and testing data. This is called
"overfitting".

To solve this problem, the ridge regression consists in adding a regularization term. The high
values of ω are penalized. The loss function becomes :

CRR = (ω) = λωT ω + 1
N

N∑
i=1

(yi − ωT fi)2

with λ ∈ R : the regularization coefficient

In the case of the binary classification, the real labels and the predictions can take the values 0 or
1.

5.4.2 Support Vector Machine (SVM)
We first place each training data sample in a space with F dimensions where F corresponds to the
number of features. Each feature’s value will correspond to the value of a specific coordinate [4]
[21].

Then, the main goal of the SVM is to find the hyperplane which best separates two groups of
samples. The chosen hyperplane has to allow to correctly classify as many data samples as possible.
However, if some data has outliers, they have to be ignored. The chosen hyperplane also has to
maximise the distances between the hyperplane itself and the data samples.

Sometimes, it is impossible to separate the data with a linear hyperplane. If there are very few
misclassified samples, we can assume that it is due to outliers. If there are lots of misclassified
samples, we can use non-linear hyperplane. That is the same as adding a coordinate which combines
other coordinates and defining a hyperplane in this new space. This method is named "kernel SVM"
[14].

The SVM classifier does not require to choose lots of parameters. We only have to decide if we
want to find a non-linear hyperplane.

5.4.3 K-Nearest Neighbours (KNN)
As for the SVM classification, the first step consists in placing each data in the space with F
dimension where F corresponds to the number of features [20][22][23][29].

21

The principle is to assign the label to a testing sample according to the neighbours of this sample.
The chosen label corresponds to the most numerous class among the K nearest neighbours (training
sample) of the currently assessed testing sample. We can also apply strict KNN algorithm. It means
that we assign the label only if all the K neighbours have the same label.

To decide if samples are neighbours or not, we have to define a distance metric. We can use
Manhattan, Minkowski, Euclidean or Hamming distances.

We also have to define K. It can induce "Underfitting" or "Overfitting". A low value of K can lead
to obtain high variances and low bias in the results. A high value of K can induce a low variance
and a high bias. The choice of K has to be done according to the input data. Indeed, if the data
contain lots of outliers or noise, we would prefer a high value of K. It is also important to choose
an odd number to avoid decision problems.

This method adapts well to new data. Moreover, we only have to choose a distance metric and a
K value. However, this method needs to store lots of data and takes time to compute. It does not
work well if the data have lots of features. Eventually, the choice of the K value strongly impacts
the results.

5.4.4 Decision tree and random forest
A decision tree asks a series of questions which leads to the prediction. Each test corresponds to
a node and each possible choice corresponds to a branch [2].

A random forest is a group of decision trees. A single tree can create rules to make decisions. A
random forest randomly selects features and creates different uncorrelated trees on the basis of
the selected features. Then, the recorded result corresponds to the mean of the results obtained
thanks to all decision trees.

Lots of uncorrelated trees allow to make more precise predictions. It protects against individual
errors and overfitting. It also allows to classify data with missing values or outliers. However, it
requires more time to process than a single decision tree. To solve this issue, we can sample the
training data.

5.4.5 Neural Network
A neural network can be used for a supervised classification. To use neural networks we have to
implement the model and to proceed to a training phase. Vectors are placed at the entrance of the
network. The output corresponds to the probability of belonging to the different classes. During
the learning phase, we can adapt the neural network on the basis of the differences between the
real labels and the predictions, by back propagation. I will now describe the architecture of a
neuron and a neural network and the changes made during the learning phase.

A neuron is made of a vector of weights, a combination function and an activation function (Figure
5.2).

22

Figure 5.2: Diagram of an artificial neuron

Some of the most famous activation functions are the softmax function, the sigmoïd function and
the Rectified Linear Units (ReLU) function.

The softmax function is :
f(x) = exi∑K

j=1 exj

With K : the size of the input vector

The sigmoïd function is :
g(x) = 1

1 + e−x

The Rectified Linear Units (ReLU) replaces negative values by zeros :
h(x) = max {0, x}

During the learning phase, the weights are optimized by back propagation of the gradient of the
difference between the real labels and the predictions (which corresponds to the loss function).
This gradient is function of the input weights. The weights changes are proportional to the chosen
learning rate. There are various optimization functions. One of the most popular and efficient
functions is called "Adam". Each loss function computed for an image also depends on the number
of images contained in the same class. If there are lots of images in the class, the associated weight
of the loss function is low.

The batch size corresponds to the number of data samples for which we compute the loss function
before simultaneously updating the weights.

During an epoch, the neural network updates its weights once on the basis of all data samples
contained in the training data set. It reexamines all the data and updates the neural network at
each epoch.

23

Between each epoch, the neural network is tested on a validation data set, which often comes from
the same original data set as the training data set.

Eventually, the model is tested on a testing data set, which at best comes from a different source
from the training and validation data set.

A neural network can be a feed forward network (Figure 5.3). It means that the information never
goes back in the model. On the contrary, the recurrent models proceed information in cycles.
These cycles allow to process the same piece of information many times by reinstating it in the
network.

Figure 5.3: Feed forward neural network

If there is not enough vectors in the learning data set, the model can perfectly adapt its weight
to the available data. In this case, the model is not appropriate anymore for other data. Then,
the network provides bad results when it processes the testing data set. This problem is called
"overfitting" and can be solved by some methods.

To avoid "overfitting", we can add a regularisation function to each layer. This is a modification
of the loss function which allows to update the network during the learning phase. By adding a
penalizing factor proportional to the weights of the layer, the regularisation function can avoid the
over adaptation to the training data set. There are different types of regularisation functions.

The function L1 is :
α

p∑
j=1

|ωj|

with α : a scalar coefficient

and ωj : the weights of the layer

The function L2 is :
α

p∑
j=1

ω2
j

The dropout is another method to reduce "overfitting". It corresponds to a temporary removal of
some neurons during the training phase. Their values are replaced by zeros during this phase and
reactivated to test the model. It requires to choose the dropout rate for each layer.

To implement a neural network, we have to choose the number of layers and the number of neurons
contained in each layer, the dropout rate, the regularization function and the learning rate.

24

5.5 Convolutional Neural Network (CNN)

5.5.1 Principle
A Convolutional Neural Network (CNN) is an acyclic neural network. In the case of supervised
deep learning, there is a learning step and a test step.

The CNN consists of two main parts. The first one is made of convolution layers. The second one
corresponds to a neural network.

An image is given in the shape of a three dimensional matrix at the entrance of the CNN (Figure
5.4). The convolution part extracts features specific to each image and reduces the number of
parameters to find in the neural network. The image goes through a succession of filters creating
new images called convolution maps. Eventually, the obtained convolution maps are concatenated
in a features vector and input to the neural network. Once a filter has been applied, each pixel
goes through an activation function. This function is often a Rectified Linear Units (ReLU) which
replaces the negative values by zeros.

Figure 5.4: CNN diagram [1]

The convolution is a simple mathematical operation usually used for the image processing and
recognition. The window containing the filter moves on the image (from left to right and from top
to bottom) with a chosen step. It requires to define the filter, the size of the window and the step.
Each filter takes into account all the layers of the image and produce a single layer. Therefore, the
obtained convolution map obtained at the output of each step (composed of a group of filters) is a
convolution map with a number of layers corresponding to the number of applied filters. For each
part of the image, the convolution (by applying the chosen filter) allows to obtain a feature map
which indicates where the features are localized in the image. The convolution filters are used for
the detection of boundaries and shapes. The mean and Gaussian filters allow to reduce noise.

Between two convolution steps, we can down sample the filtered images by using a Max or Average
Pooling. The Max Pooling (or Average Pooling) keeps the maximum value (or mean value) for
each region swept by the filter to reduce the size of the image. It reduces the number of parameters
to learn and it makes the features extraction invariant under translation. It also keeps the essential
features contained in the image.

25

The neural network is the classification part. It is made of fully connected layers that combine
the features to analyse and classify the image. The neural network successively apply linear
combinations and activation function to classify the image. The output corresponds to a vector
containing the probability of belonging to a each group.

During the learning step, the filters of the convolution part and the neurons of the neural network
are updated by an algorithm of back propagation based on the difference between the real label
and the prediction.

5.5.2 Transfer learning
The transfer learning consists in adapting a pretrained CNN model. The knowledge contained in
such a network can be used in two ways. It can be used as a simple image features extractor.
Then, we only have to replace the last layer with a layer adapted to the number of classes. The
pretrained model can also be considered as a model initialisation. Then, the model can be more
finely retrained and adapted to our data set. This method is called "fine tuning". The last layer
has to be adapted to the number of classes. We also can add layers between the pretrained model
and the last layer. To take advantage of the features extraction capacity of the original model, we
have to choose a low learning rate (around 10−3). It is a good way to slowly adjust the model to
the new classification problem [3] [16] [8].

We can also use pretrained models as features extractors without adapting them to the new data
set. Then, we need to add a classifier.

There are lots of pretrained models available in the "tensorflow" library : "AlexNet", "ZFNet",
"VGG 16", "VGG 19", "GoogleNet", "ResNet", "Inception", etc. Some of these CNN models have
particularities.

In the "ResNet" models, some steps are composed of two parallel paths. One of the paths is made
of some filters, while the other one consists in keeping the original input. Then, the two paths are
combined by adding together the two obtained convolution maps (Figure 5.5) [5].

Figure 5.5: Building block of a "ResNet" model [5]

The "Inception" models also rely on the idea of using parallel paths before combining the obtained
filtered images. In this case, each path is composed of a set of filters. At the end of each step, the

26

filtered images are concatenated. The following image (Figure 5.6) corresponds to the building
block of the first version of the "Inception" model [24].

Figure 5.6: Building block of the first version of the "Inception" model [24]

Because one filter combines all layers into a single one, using a set of filters (with a size of 1 × 1)
can reduce the number of layers if the number of filters is smaller than the number of original
layers. It allows to reduce the computing time of the following steps. This method has been used
in the next versions of the "Inception" model. Moreover, the computing time has been improved
by replacing filters with an important size (5 × 5 for example) by more filters with smaller sizes
(3 × 3 for example). Eventually, the filters with a size N × N have been replaced by two filters
with sizes 1 × N and N × 1. The following image (Figure 5.7) corresponds to the building blocks
used in the third version of the "Inception" model [25].

Figure 5.7: Building blocks used in the third version of the "Inception" model [25]

27

5.6 Results obtained in different articles dealing with vari-
ous contexts of classification

I will first develop on an article [14] which deals with a binary classification of colored images in two
classes, one containing images with auroras and another one containing images without aurora.
Different features extraction methods were used and compared. At the end, the classification
was made thanks to a kernel SVM. The OLBPC (with a radius of one pixel) method offered
poor results with a mean cross validation error around 35, 59%. The SIFT method was tried with
different color systems. A first solution consists in applying the SIFT algorithm to a channel which
is a combination of the three RGB channels. They hypothesised that the auroras often contains
green. Therefore, they decided to give a weight of 2 for the green channel and to subtract the red
and blue channels (2G-R-B). This solution offered a better result than the OLBPC method with a
mean cross validation error of 13, 7%. Then, the SIFT algorithm was used on the normalized RGB
channels. It allowed to reduce the mean error to 8, 67%. The SIFT algorithm was also applied to
the channels G and the combination previously described (2G-R-B). The mean error was 8, 63%.
The SIFT method was also applied to the Opponent colors system. This solution gave the best
result with a mean error of 8, 51%. When this last method was tested on another data set, the
obtained error was around 20%.

The second article [20] deals with a binary classification between images containing auroras and
images which do not contain aurora. The available images are gray scale images centered at 557,7
nm with a bandwidth of 2,0 nm. Different features extractors have been compared with each other.
Then, a KNN classifier has been used with different values of K. Regardless of the features extractor,
the classification is improved until K = 5. Therefore, we will focus on the results obtained with
K = 5. The first extractor consists in computing global statistical brightness descriptors : the
minimum, the maximum, the mean value, and the range. Computing the mean, the minimum and
the maximum values allows to obtain an error of 12%. The brightness descriptors have also been
computed for the different local area of the images (with 3 × 6 = 18 area). It allows to improve
the robustness against global brightness variations. Computing the minimum, the maximum and
the mean values allows to obtain an error of 6%. Computing only the local mean value or the
range allows to obtain similar results. The global LBP features extractor gives an error of 14%
while the local LBP (with 3 × 6 = 18 area) gives an error of 7%. Eventually, the OSID method
has been used by dividing the images into three and seven angular sections. These two methods
give an error of 8%. We notice that the local extractors give better results than global extractors.

The fourth article [23] deals with a classification into classes which contain three different types of
auroras (auroral arcs, patchy aurora and omega-bands). The available images are gray scale images
centered around 558 nm. The features extracted are the brightness (mean and maximum value),
the north-south and east-west brightness distribution and the vector linked to the Gabor wavelet
decomposition as previously described. Next, the distances related to each feature are computed
between all points. Then, the final distance between two points corresponds to the Euclidean
distance. Eventually, the label is assigned thanks to the KNN algorithm. Images are randomly
selected in the full data set. Then, if we apply a strict KNN, some images are not classified. 99%
of the "auroral arcs" and 89% of the "patchy auroras" are correctly classified. However, only 12%
of the "omega-bands" are correctly classified.

We focus now on an article [22] which deals with auroras detection on gray scale images centered

28

around 557,7 nm. It does not take into account images where the moon is above the horizon.
First, we compute the mean value of brightness in the dark corners. It corresponds to the noise.
Then, this value is subtracted from each pixel. Next, the mean and maximum brightness values are
computed for each image. Eventually, the KNN classifier is applied to the testing data. Different
values of K are tested. The higher the K value, the better the accuracy, until K achieves 17. If
K = 17, the obtained error is around 8%.

The next article [21] deals with a classification of all-sky and gray scale images into six different
classes corresponding to different types of auroras. The BGLAM is computed for each image.
Then, a SVM enables the classification. It offers an accuracy between 34% and 42% if each image
corresponds to a given type of aurora. If an unknown class is added before the labelling step, the
obtained accuracy is between 50% and 53%.

An article [29] deals with a classification into three classes corresponding to different types of aurora
on the basis of gray scale images. It is shown that the features extraction with the algorithm LBP
clearly outperform the extraction based on the BGLAM extractor. The exact results depends on
the K of the K-NN classification.

The next article [3] deals with a classification of colored images in six classes. Three classes
contain images with three different types of auroras : "arc auroras", "diffuse auroras" and "discrete
auroras". Another class contains images which show cloudy sky. The fourth class contains images
which mainly contain moonlight. The last class contains images with a clear sky with visible stars
but without auroras. Therefore, in this classification, there is no differentiation between cloudy
skies without aurora and cloudy skies with auroras. The preprocessing step consists in cropping
the image to remove the pixels at low elevation angles. For each image, we compute the first
percentile of the brightness values and we subtract this value to each pixel. Then, the ninety-ninth
percentile is computed and all pixels are divided by this value. Eventually, all values above 1 are
reduced to 1. Then, the pretrained model "Inception V4" is used as a features extractor. At the
end, the ridge classifier is used to allow the classification in the six previously described labels. The
results show that the model separates well the classes containing moonlight, clouds and auroras.
However, the classes containing auroras are confused. If we consider six classes, we obtain a mean
error of 18, 3%. If we consider three classes by combining the classes containing auroras, we obtain
a mean error of 4, 4%.

The next article [8] deals with colored images without clouds, moonlight or sunlight. The images
are classified into seven different classes, corresponding to different types of auroras. A median
filter is first applied on all images to remove the noise. Then, some well known CNN models are
tested. However, these models are not pretrained. The "ResNet50" and "ResNet18" models allow
to obtain an error around 8%. With the "ResNet50" model, the obtained recall is around 89%.
With the "ResNet18" model, the obtained recall is around 87%. The "AlexNet" model gives an
error around 12%. The "VGG-16" gives an error of 16% and the "VGG-19" gives an error of 18%.
Therefore, the best result is obtained with the "ResNet50" model.

The last article [16] deals with a classification into six classes (Three classes containing three
different types of auroras and three classes without aurora). This classification enables to obtain
more information than if we only apply a binary classification (Images with or without aurora).
Moreover, it improves the accuracy of this binary classification. The available images are gray scale
images around 557,7 nm. First the images are re-scaled between the 0,5 and the 99,5 percentiles.

29

Then all pixel values are normalised. Eventually, we use transfer learning. We apply well known
models pretrained on the "ImageNet" data set. However, they did not use "fine tuning" because
they only had 6000 images. Therefore, it could induce "overfitting". Then, the classification
is made thanks to a ridge classifier. Lots of models ("ResNet50", "InceptionV3", "InceptionV4",
"ShuffleNetV2", "VGG-19", "PolyNet", etc.) have been tried and give similar results with an error
between 6% and 12%. No model clearly outperforms another one, because the mean accuracy of
a model is often contained in the confidence interval of the other ones. These confidence intervals
have been found thanks to cross validation.

30

Chapter 6
Strategy

We would like to detect all auroras even if we also detect images without aurora. Therefore, we
will prefer to improve the recall rather than the precision.

The project will be divided into four main parts. The first one consists in preparing the data. The
second one consists of the selection of the most appropriate classification model. The third step
consists in testing the best models thanks to a data set from another season to see which images
are misclassified. Eventually, I will try to apply the best models to homogeneous classes.

I will first explain the training and testing data sets preparation. We use the data set from the
winter 2019-2020.

To improve the accuracy, the recall and the precision, we can classify into more than two classes.
Then, the accuracy, the recall and the precision can be computed for two classes.

The available images which are labeled ("Aurora" or "No Aurora") also have labels which determine
if there are clouds or not. Therefore, we can split the images into four classes : "Cloudy with
auroras", "Cloudless with auroras", "Cloudy without aurora", "Cloudless without aurora".

In a same class, two images can be really different. Moreover, two images from two different classes
can be similar. Indeed, the global appearance of an image depends on lots of parameters like the
sunlight, the moonlight, the opacity of the clouds or the light pollution. The images vary during
the season because of these previously mentioned parameters. In the same file (containing images
with the same label), the images are in chronological order. The dilemma is to know if we have
to mix the data before splitting them into training data and validation data. If the data samples
are randomly mixed before being separated, the risk is to have very similar images in the training
data set and in the testing data set. However, if the images are not mixed before the splitting
step, the induced problem depends on the percentage of validation data. If we do not have enough
training data, the risk is to train the model with a small variety of images. If we do not have
enough images in the validation data set, the model will be validated on a small variety of images
which is not representative. It can induce bad or good results, which do not have significance.

There are six minutes between the capture of each available image. Overall, it avoids having
the same image in the training data set and in the validation data set. However, we still have
some images which are very similar in these two data sets. This is due to the fact that some sky
conditions can last for hours.

A possibility is to remove a part of images which are neighbours and have a high similarity index.
Then, we can mix the data before splitting them. We will have to define an appropriate similarity

31

index and a threshold above which two images are considered as similar images. A compromise
has to be found to delete similar images and keep enough images.

The previously described step will allow to remove lots of images from the data set. Then, we will
check the labelling. For lots of images, the presence or absence of auroras is obvious. However,
for other images, the auroras are barely perceptible. These images are labeled "Aurora" or "No
aurora". According to me, some images which have been classified as "No aurora" images clearly
contain auroras. However, some images which have been classified as "Aurora" images contain
auroras which are very difficult to see.

I can choose to place all images containing auroras which are hardly perceptible in the file "Aurora"
or in the file "No aurora". I can also create a third label containing the images which are difficult
to classify. However, if we consider that it is difficult to decide if an image contains an aurora
or not, it is more difficult to define a threshold between a clearly visible and a barely perceptible
aurora. Therefore, I won’t consider this option. I prefer to place all images containing auroras in
the same file.

To prepare the testing data set, I just need to split the data from January 2022 into four classes
and to check the labels. This data set contains images which can have different aspects from the
images in the training and validation data set. However, even if we tried to have a representative
data set, there are probably a lack of representation of certain types of images.

During the second step, I will try to find the most appropriate classification model. Because the
data set from January 2022 was available at the end of the project, I used the validation data set
to look for the best models. I will first focus on the methods that do not include CNN. Then, I
will try to use CNN models.

I will select a dimension reduction and a classification method and compare different combinations
of preprocessing and features extraction methods. The following phase consists in selecting a
Convolutional Neural Network (CNN). We will use the fine tuning and try different parameters
combinations.

Once the most promising models are found, we can test their robustness thanks to the testing data
set and see which types of images are misclassified.

Despite the subdivision of each class into sub classes "Cloudy" or "Cloudless", we see that the images
within a same class can have very different aspects while two images from two different classes can
look very similar (Figure 6.1). I want to avoid that a feature often but not systematically contained
in the images of a given class becomes the only criterion of classification. It could improve the
global accuracy on the training data set but ignore important features and give poor results on
a different data set. As previously explained, the weather, the moonlight, the sunlight and the
light pollution have a huge impact on the images. Therefore, I will try to divide the four available
folders into homogeneous sub folders. To do that, I rely on the histograms of each image.

Once we obtain the new classification, we can apply the classification methods and see if it offers
better results. Even if it is not the case, it will help see what images are difficult to classify.

The models are loaded and the parameters and the performances are written in a text file. The
recording time is contained in the model’s name and in the text file. It allows to link the model

32

with its associated parameters and accuracy. To change and test different methods, I choose to
organise the program into classes.

Figure 6.1: All-sky images: Images containing clouds and auroras on the first row; Images con-
taining auroras but no clouds on the second row; Images containing clouds but no aurora on the
third row; Images containing no aurora and no cloud on the last row

33

Chapter 7
Implementation

7.1 Data preparation
To create the training and the validation data sets, I have access to folders containing more than
41800 images with the labels "Aurora" or "No aurora". These images have been taken during the
winter 2019-2020. I have also access to more than 37300 of these images in another folders where
they are labeled "With clouds" or "Without clouds". Therefore, I first create four new folders
containing the images of the same category : "Cloudy with auroras" (containing 1095 images),
"Cloudless with auroras" (containing 5319 images), "Cloudy without aurora" (containing 18519
images), "Cloudless without aurora" (containing 7893 images).

Then, I remove images which are neighbours and have a high similarity rate. To assess the
similarity, I compute the Structural Similarity Index (SSIM) [30] between two images which are
neighbours. I first compute the SSIM of the two first images. If this index is higher than a
previously chosen threshold, we consider that the images are similar. Then, we can remove the
second image and compare the first and the third image. If the two compared images are not
similar, the third image is not removed and becomes the reference image. Then, we can compare
the third image to the fourth one. A compromise has to be found to delete similar images and
keep enough images. If we apply a low pass filter before computing the SSIM, we will obtain a
higher value. If we compare two dark images with stars located at different places, we will obtain
a low value and consider these images as different images. However, if we apply a low pass filter,
we cannot keep enough data to train the models. Choosing the threshold for which two images are
considered as similar images also requires to make a compromise between keeping enough images
and removing similar images. I choose not to apply a low pass filter and to set the threshold at 0, 9.
After this step, there are only 13671 images. There are 751 images with the label "Cloudy with
auroras". 4903 images have the label "Cloudless with auroras". There are 4080 images contained
in the folder "Cloudy without aurora". 3937 images have the label "Cloudless without aurora".

Then, I check the labels of each image. As previously explained, I put all images containing hardly
noticeable auroras in the classes "Cloudy with auroras" or "Cloudless with auroras". Eventually,
I obtain 896 images in the class "Cloudy with auroras", 5297 images in the class "Cloudless with
auroras". There are 3741 images with the label "Cloudy without aurora" and 3542 images with the
label "Cloudless without aurora".

To create the testing data set, I use the 14775 images from January and February 2022. I split
the images into four classes : 992 images are labeled "Cloudy with auroras", 7286 have the label
"Cloudless with auroras", 4622 images are "Cloudy without aurora", and 1874 "Cloudless without

34

aurora". I do not need to remove the similar images. The testing data set will enable to assess the
trained model on a completely new data set and to see if some images are difficult to classify.

7.1.1 Structural Similarity Index (SSIM)
The Structural Similarity Index (SSIM) is a way to compare two images [30]. The SSIM allows to
extract and compare luminance, structure and contrast. It produces a value between 0 and 1. A
value close to 0 indicates that two images are very different. A value close to 1 indicates that two
images are similar to each other.

Let x be an image :

The luminance corresponds to the average over all pixels.

µx = 1
N

N∑
i=1

xi

with xi : the pixel′s value

The contrast is computed on the basis of the standard deviation of the pixels values.

σx = ((1
N − 1

N∑
i=1

(xi − µx)2) 1
2)

The structure is computed as follows :

stx = x − µx

σx

The function of luminance comparison is computed thanks to the luminance measure :

l(x, y) = 2µxµy + C1

µ2
x + µ2

y + C1

with C1 = (K1L)2

L = 255 : The dynamic range for the pixel values

K1 and K2 are constants

The function of contrast comparison is computed thanks to the contrast measure :

c(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2

with C2 = (K2L)2

The function of structure comparison is computed on the basis of the structure measure :

35

s(x, y) = σxy + C3

σxσy + C3

with C3 = C2

2

and σxy = 1
N − 1

N∑
i=1

(xi − µx)(yi − µy)

The SSIM is computed on the basis of the three previously described functions :

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ

with α > 0 , β > 0 , γ > 0

These values correspond to the relative importance of each metric. To simplify, we set α = β =
γ = 1.

Eventually, the SSIM corresponds to the following expression :

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

The previously described metric is global. We can compute the Mean Structural Similarity Index
(MSSIM). We define a gaussian window with a size of 11 that we can shift pixel by pixel across
the image.

The local statistics are computed as follows :

µx =
N∑

i=1
wixi

σx = (
N∑

i=1
wi(xi − µx)2) 1

2

σxy =
N∑

i=1
wi(xi − µx)(yi − µy)

with wi : the gaussian function

The MSSIM corresponds to the following expression :

MSSIM(x, y) = 1
M

M∑
j=1

SSIM(xj, yj)

36

7.2 Selection of the models
To select the classification models, I implement a program organised in different classes. In this
diagram (Figure 7.1), we do not consider the fist step consisting in preparing the data.

Figure 7.1: Diagram of the Python code

A part of the classes is used to find a combination of preprocessing, features extraction, dimension
reduction and classification methods. The images are extracted from the files thanks to the class
"Files opener for CNN", which uses the class "Preprocessor" to choose the preprocessing step. The
class "Preprocessor" allows to choose a combination of preprocessing steps. Each single prepro-
cessing step is a method written in the class "Image". The output of the class "Files opener for
methods without CNN" consists of the variables "X train, X test, Y train and Y test". It corres-
ponds to the images and the associated labels of the training data set and the testing data set.
Then, the feature extraction is allowed thanks to the class "Feature extractor". This class calls
methods from the class "Feature extraction models" which, in turn, call methods from the class
"Image". Then, we can apply the dimension reduction to the extracted features thanks to the class
"Dimension reducer". Eventually, the obtained features can be classified by methods contained in
the class "Classifier without CNN". The file "Processing chain for models without CNN" allows to
apply the previously described processing chain.

37

The second part of the classes allows to apply CNN. We can adapt the features extraction to put
more data in the training, validation and testing data sets thanks to the "tensorflow" library. The
variables "Train, validation and test generators" are extracted by the class "Files opener for CNN".
Then, the class "Classifier using CNN" allows to train and test the chosen models. The processing
chain is applied in the file "Processing chain for models using CNN".

7.2.1 Selection of methods without using CNN
Because the context is often not the same as those in the previously described articles, we cannot
directly compare the obtained results. Indeed, we deal with a binary classification (With or without
aurora) on colored images containing clouds, moonlight, sunlight or artificial light. In some articles,
the available images were gray scale images.

I will compare different preprocessing steps and features extraction methods. I choose to remove
noise by subtracting the mean value of the black pixels contained in the corners. I also choose
not to apply an algorithm which improves the contrast as preprocessing step to avoid revealing
irrelevant features. To compare the methods, I will choose a dimension reduction algorithm and a
classifier.

The chosen dimension reduction is the UMAP algorithm because this method is theoretically
efficient and does not require to choose lots of parameters. The minimum distance between two
points in the new space is fixed to 0 and the number of points considered as neighbours of each
pixel is fixed to 100.

We also choose the random forest as a classifier for its efficiency. Moreover, unlike the neural
networks, it does not require optimizing parameters.

There are various features extractors that we could apply on different color channels. For each
features extraction, it is possible to use different preprocessing steps. Therefore, it is impossible to
try to apply all the potential combinations. That is why we will first focus on some of the features
extractors that have been already tried. We will keep the methods which offered the best results.
However, we cannot compare our results to the results obtained in the previously described articles.
Indeed, we are not in the same context and we do not apply the same preprocessing methods,
dimension reduction algorithms and classification methods.

As previously mentioned, the following features extraction methods have been tested :

- global statistical descriptors on gray scale images,

- local statistical descriptors (3 × 6 = 18 area) on gray scale images,

- the north-south and east-west brightness distributions on gray scale images,

- the SIFT algorithm on a combination of the three RGB channels (2G-R-B),

- the SIFT algorithm on the normalized RGB system,

- the SIFT algorithm applied to the green channel and combination (2G-R-B),

- the SIFT algorithm applied to the Opponent colors system,

- the OSID algorithm by dividing the gray scale image into three angular sections,

38

- the OSID algorithm by dividing the gray scale image into seven angular sections,

- the BGLAM applied to the gray scale images,

- the global OLBPC applied to the RGB channels,

- the global LBP applied on gray scale images,

- the local LBP applied on gray scale images (3 × 6 = 18 area),

- the Gabor wavelet decomposition on gray scale images.

The local statistical descriptors gave better results than the global ones. Therefore, we can try to
compute local statistical descriptors on RGB channels, HSV channels or Lab channels [20].

I will first compute local statistical descriptors on the RGB, HSV and Lab channels. I will use
the polar coordinate system to remove the black corners and to keep all other pixels of the image.
Then, I will divide the images into 10 × 10 = 100 areas, and compute the standard deviation, the
minimum, maximum, and mean values for each channel and each area.

Before computing local statistical descriptors, we can remove the noise by applying a low pass
filter.

The East-West and North-South brightness distributions have not be compared to other features
extractors. We can also try to compute other type of distributions. Because we have colored
images, we can try to compute the distributions for different channels (RGB, HSV or LaB) [23].
We choose to use a features extractor which consists in computing the brightness distribution along
the rows and the columns of the image in polar coordinates. It allows to give the corresponding
distributions along the concentric circles and the radius of the images.

Before computing the value or hue distribution, we can also apply a low pass filter to the image
to remove the noise.

The SIFT algorithm applied to the normalized RGB channels and to the Opponent color system
enabled to obtain especially good accuracy [14].

I will apply the SIFT algorithm to the normalized RGB channels.

If we use this extractor, it is better to use the cartesian coordinate system (and not the polar one).
Indeed, the SIFT extractor considers the direction of the features. Moreover, we cannot apply a
median or Gaussian filter before the features extraction. Indeed, the SIFT algorithm is based on
the features extraction at different scales and different orientations. Therefore, if we first apply a
low pass filter, we cannot keep the information contained in the high frequencies.

If we apply the SIFT extractor to two different images, we will not detect the same number of
features in each image. Thus, we will not obtain the same number of vectors for all images. To
solve this problem, we can use the Bag of Words (BoW). The main idea is to keep all the vectors
from all images and to create clusters of these images. Then, for each image, we can create a
histogram counting the number of features (vectors) contained in each cluster.

To compute the SIFT extraction, we can use the "sift" method from the library "cv2".

39

The OSID on gray scale images enables to obtain similar results if the images are divided into
three or seven images [20].

To extract features, we can apply the OSID algorithm to different channels of the color system
RGB, to the channels H and V (Hue and Value) in the HSV system, or to the channels of the color
system Lab.

The first step consists in applying a Gaussian filter. The second step consists in binning the image,
which improves the contrast. Therefore, these two steps are not considered for the preprocessing
phase.

The local LBP allows to obtain better results than the global LBP. Then, because we have colored
images, we choose to apply local OLBPC algorithms on the RGB channels [20].

The Gabor wavelet decomposition has not been compared to the other features extractors [23].

The recall, the accuracy and the precision are equal to 1 when these methods are applied to the
training data set. Therefore, we are sure that the learning phase works well. I applied the methods
to the validation data set. The obtained results are mentioned in the following table (Table 7.1):

Table 7.1: Results obtained by applying features extraction algorithm on the validation data set

When I tried to compute local statistical descriptors on different channels. The chosen channels
did not impact the results and the obtained accuracy was around 75% while the recall was around
70%. Then, I computed the values distributions of the different channels along the row and columns
after polar transformation. I obtained better results by applying this feature extractor to the RGB
and to the Lab channels. The obtained accuracies were around 80% and the recalls around 75%.
Applying this extractor to the HSV channels gave an accuracy of 73% and a recall inferior to
70%. The method based on OSID gave an accuracy of 75% whatever the chosen channels, and
a recall between 70 and 75%. The local OLBPC provided an accuracy between 75 and 80% and
a recall around 75%. The colour channels did not have any impact. However, the method based
on SIFT was not efficient at all. Indeed, even if this method could be efficient, it requires to use

40

BoW, and therefore, we need to optimize lots of parameters. Therefore, we could conclude that
the most appropriate feature extractors were the OLBPC applied on local areas of the images, and
the values distributions of each channel of the RGB and Lab colour systems.

After choosing a feature extraction, if we had more time, we could also optimize the reduction of
dimension and the classification algorithm.

7.2.2 Selection of the CNN models
Because I get the testing data set late in the project, I optimized the CNN model on the basis of
the validation data set.

The implementation and the training of a model from the beginning requires to choose lots of
parameters (Number of filters, size of the window, number of layers, number of neurons in each
layer, etc.) or to work from a well-known model architecture. The pretrained version of such
models is often available in "Keras" library. Moreover, we know that the use of pretrained CNN
models offered better results for detection and classification of auroras and for lots of other image
classification tasks. Therefore, we suppose that the "transfer learning" can allow to achieve better
results than if we create and train a model from the beginning. It has been used and detailed in
a previously mentioned article [16]. The features extraction was performed by pretrained CNN
models and the classification was allowed by a ridge classifier. However, the "fine tuning" was not
used. All the tested models offered similar results. Indeed, the cross validation allowed to find the
mean accuracy and an uncertainty range. The data set is split into training and validation data
set before training the model and saving the accuracy. This step is reproduced many times, while
using different splits of the data each time. Then, the different accuracy values are saved as a
mean accuracy and an uncertainty range. We can notice that even if a model gives a better mean
accuracy than another one, each model’s mean accuracy is contained in the uncertainty range of
many other model. With the "fine tuning", this result could be investigated.

First, we can choose one of the models and compare various neural networks combinations to
the output of the CNN model to classify the images. We use "fine tuning" with a low learning
rate to avoid removing all information contained in the pretrained model. Then, we reproduce
the experiment with another pretrained model. This approach allows to optimise the possible
classification accuracy for a given pretrained model and to see if different models have the same
behavior according to the final neural networks combination.

Nevertheless, because the "fine tuning" and the optimisation of neural networks require a long time
(around ten hours to train a model), it will be impossible to test more than two pretrained CNN
models. It will also be impossible to use cross validation for the chosen models and therefore,
to know the uncertainty ranges of the accuracy. However, we will still see if some models give
significantly better results than other models. We will also be especially careful not to select
models which do not assign one of the labels. It means that, even if the model gives a good
accuracy, we cannot rely on it. Indeed, if the testing data set includes a very small number of
data with this label, the result can be improved by simply ignoring this label. Nevertheless, it
annihilates all possibilities to classify this type of data.

We choose the batch size equal to 32 for the next steps. The number of training epochs is fixed
to 10 to allow to test enough models. Indeed, each training epoch requires around one hour to

41

process. Moreover, we often see that the model does not improve after the fifth epoch. We will
systematically keep the state of the model at the epoch with the best accuracy on the validation
data set. It enables to avoid "overfitting".

For now, the learning rate is fixed to 0.0001. It should enable a slow but precise learning. It
avoids removing all information contained in the pretrained model. We choose the "ResNet50" and
"InceptionV3" models pretrained on the data set "ImageNet" and we add various combinations of
neural network to the output. The chosen activation function between each layer is "ReLU" and
the final one is "Softmax". Indeed, "Softmax" is adapted to the multiclass classification. I choose
to use the optimizer "Adam". Moreover, because we do not have the same number of images in
all classes, we adapt the weight of the difference between the real label and the predicted label
according to the number of images contained in the class. If there are lots of images in a class, the
associated weights of the errors will be low.

The classification is made into four classes and we record the results obtained on the validation
data set by combining the classes with auroras for their part, and classes without aurora in the
second class (Table 7.2).

For the majority of neural network combinations, we do not see big differences between the "Res-
Net50" and the "InceptionV3" models. However, the results can also be really different for a same
neural network to the output according to the chosen pretrained model. Therefore, if we apply
"fine tuning", the obtained results depend on the chosen pretrained model, and if we had more
time, we could continue trying other models.

We notice that if the recall is exceptionally high, the precision is low, and that if the precision
is high, the recall is exceptionally low. There is an anti-correlation through the extreme values.
It happens if the model chooses to put almost all difficult-to-classify images in the same class.
If these images are put in the class of the images containing auroras, the recall is high. If these
images are put in the class of images containing no aurora, the precision is high.

We clearly see that the most appropriate regularisation function is "L2". When the regularisation
rate is fixed to 0.03 and the dropout rate is fixed to 0.3, we notice that the best accuracies
and recalls are obtained with two layers containing between 100 and 200 neurons. The models
containing three layers with the same or different sizes often offer poor results. If I choose to keep
two layers of 150 neurons, I cannot see a clear trend in the results when I change the regularization
rate. The dropout rate does not change the results much either. The obtained accuracies and
recalls are close to each other for the majority of the combinations.

To optimise parameters, we could use a Bayesian optimiser. Nevertheless, it would take lots of
time and would not improve the results. Indeed, in our case, some parameters are not real values
(type of regularization function for instance) and have to be selected in the beginning. Then, there
are still lots of parameters to optimise, and each parameters can correspond to an infinite number
of possible values. Therefore, a Bayesian optimisation would require an extremely long time to
give interesting results. Moreover, it seems that we reach an accuracy which is difficult to exceed
and that the differences between most of obtained accuracies are not significant. Even if a model
gives a better accuracy than the other ones, its mean accuracy would probably be contained in
the uncertainty range of some other models if we had time to proceed to the cross validation.
Therefore, the optimiser could over-analyze accuracy differences between two models and try to

42

Table 7.2: Results obtained by applying different CNN on the validation data set (Results given
in percent)

find a maximum value of a "n-dimensional function” where the noise has a higher range than the
actual variations of the "n-dimensional function" itself. Moreover, it does not consider if a label is
ignored.

Because the methods with CNN give better results, I will focus on the testing phase of the CNN
models.

7.3 Testing the CNN models
I will apply the previously described models on a new testing data set which contains images from
another season (Table 7.3).

On the testing data set, we notice that the results are not as good as the results obtained with the
validation data set. This can be solved by using a bigger training data set. The best models reach
a recall and an accuracy between 85% and 90%. Unfortunately, the precision is always better than
the recall. Therefore, we will more probably miss auroras.

43

Table 7.3: Results obtained by applying different CNN on the testing data set (Results given in
percents)

The regularization function "L2" also gives exploitable results with the testing data set. If I choose
a regularization rate at 0.03 and a dropout rate at 0.3, the recall does not exceed 85%. The best
accuracies and recalls are obtained for two layers of 100 neurons and with the "InceptionV3" model
associated to three layers, one with 50 neurons, the second one containing 100 neurons, and the last
one containing 150 neurons. Like for the validation data set, we do not clearly see a trend in the
results when we change the dropout rate and the regularization rate. However, if we consider the
recall and the accuracy, the "ResNet50" model associated to a dropout rate at 0.3 regularization
rate at between 0.1 and 0.5 with three layers enable to achieve a very good precision (between 90%
and 100%) but a poor recall (between 40% and 85%). The "InceptionV3" model associated to two
layers of 150 neurons, a dropout rate at 0.7 and a regularization rate at 0.5 enables to achieve the
best recall (87%) and a good accuracy (88%).

Even if the differences are more clearly visible on the testing data set, we also seem to reach an
accuracy and a recall difficult to exceed. The best accuracies and recalls are also close to each
other.

44

If I consider the confusion matrix of the best models (Tables 7.4 and 7.5), I clearly see which
classes are confused.

Table 7.4: Confusion matrix of the pretrained model "ResNet50" associated to a classifier composed
of two layers of 15O neurons, a dropout rate of 0.3 and a regularization “L2” with a rate equal to
0.5

Table 7.5: Confusion matrix of the pretrained model “InceptionV3” associated to a neural network
of two layers of 150 neurons, a dropout rate of 0.7 and a regularization “L2” with a rate equal to
0.5.

The images containing auroras and clouds are often considered as images containing clouds but
no aurora. The clouds prevent the detection of auroras. The images containing auroras but no
clouds are mainly considered as images containing auroras and clouds. I think that it is due to the
fuzzy threshold between images containing clouds and clear images. Hopefully, it does not impact
the detection of auroras. The images containing clouds and no aurora are mainly well classified.
The images containing no aurora and no cloud are considered as images containing no aurora but
clouds. Like for the images with auroras, the threshold between images containing clouds and
images containing no cloud is difficult to define. A sky is considered as cloudy if it is mainly
cloudy in the centre of the image or cloudy enough to obscure the detection of auroral structures.
It does not disturb the detection of auroras.

Next, I will visualize which images are misclassified by the best models. As we can see in Table 7.3
the best “ResNet50” models were those with two layers of 150 neurons, a dropout rate of 0.3 and

45

a regularization “L2” (with a regularization rate equal to 0.1 or 0.5). The “InceptionV3” model
which offers the best accuracy and the best recall is the one with a neural network of two layers
of 150 neurons, a dropout rate of 0.7 and a regularization “L2” with a rate equal to 0.5. We can
see the images which contain auroras but are classified as images which do not contain aurora.
These images are considered as false negatives (Figure 7.2). We can also see the images which do
not contain any aurora but are classified as images with auroras. These images are false positives
(Figure 7.3).

Figure 7.2: False negatives

46

Figure 7.3: False positives

We can notice that the misclassified images are dark blue or gray images. They contain clouds,
moonlight or faint auroras. The clouds and moonlight can create light arcs on the border of an
image which can be confused with the features created by an aurora. The false negatives contain
only faint auroras which are difficult to detect even for a human. We previously decided to label
all images containing faint auroras as "Images containing auroras". It could explain the difficulty
to obtain a better recall. Eventually, we can conclude that many of the images containing auroras
and images which do not contain aurora have similar aspects.

Eventually, we can try to apply one of the best CNN models to the homogeneous sub classes
obtained on the basis of the HSV histograms. Indeed, the background sky illumination covers the
whole field of view and affects the colour of the observed auroras. Because a majority of images
in a given class can contain the same colors, the models could base the classification only on the
colors. For example, there are lots of green pixels on black backgrounds in the majority of images
containing auroras. Therefore, the models could misclassify the few images containing red auroras
or auroras in cloudy skies, and achieve good results. This new classification could improve the
results and will enable to see which images can be easily misclassified.

47

7.4 Applying CNN models to homogeneous sub classes
To create sub classes where images have similar appearances, I rely on the HSV histograms. I com-
pute the mean of each channel (H,S and V), the standard deviation and the most represented value
of each channel. Each image is associated with the vector containing these previously described
descriptors linked to the histograms. Then, for each class ("Cloudy with auroras", "Cloudless with
auroras", "Cloudy without aurora" and "Cloudless without aurora"), I apply a dimension reduction
method (UMAP) and a clustering algorithm (K-means) to create sub classes. If I choose to divide
each file into less than ten sub classes, the images contained in a same sub class can have very
different appearances. To avoid that some groups mix images with too different appearances, I
choose to divide each class into thirty groups. Then, we can aggregate the obtained groups to
obtain three, four or five sub classes.

Unfortunately, the classes (Annex E) based on the histograms have major disadvantages. Indeed,
some classes contain much more images than other ones. Moreover, the distribution of images
among the different classes is complicated. Indeed, if we choose to put in the same class all
images of blue skies without aurora and cloud, dissimilar images will be contained in the same
class. However, if we decide to divide these images into two groups (for light blue and dark blue
images), the threshold between the two groups is difficult to define. Therefore, I try to adapt
the aggregation to reduce the inequalities among the number of images contained in the classes.
However, despite these precautions, one of the sub class contains less than two hundred images
and another one contains almost two thousand images. Once this new labelling has been done, we
obtain twenty-one sub classes spread across the four original classes. Even if it fails to improve
the results, this new classification can allow to understand which images are difficult to classify.

In the class "Cloudy with aurora", there are only 896 images. Therefore, it is impossible to split
this folder into lots of different ones. Therefore, we cannot separate the 172 light blue and dark
blue images which are placed in the same sub folder. We have the same problem for the 147 light
gray and dark gray images which are contained in another sub folder. 577 dark and brown images
are contained in the third sub folder. It is impossible to define a threshold between the dark and
the brown images.

In the class "Cloudless with auroras", there are 5297 images. Therefore, we need to subdivide this
class into many groups. There are 1875 dark images with imperceptible auroras and 1124 images
with dark sky and clearly visible green auroras. It was especially difficult to define a threshold
between these two types of images. However, a single class for all these images would have too
much elements compared to the other sub classes. One of the sub folders contains 903 light and
dark gray images. There are not enough light gray images to create two sub folders. The last class
contains 710 light and dark blue images. As for the previous class, there are not enough light gray
images to create two folders.

The class "Cloudy without aurora" contains contains 3741. I decided to create seven different sub
classes. There are 968 black and dark brown images. I created another class for the light brown
images even if the threshold between them and the dark brown images was difficult to define. 713
light and dark gray images are contained in the same folder because there are not enough light
gray images to create two different classes. Then, there are three groups with blue images. The
first one contains 218 dark blue images. The second one contains 574 light blue images. Even if

48

the threshold was difficult to define, there is a great difference between the lightest and the darkest
images. The third group contains 144 light blue images which can also be considered as white
images. Eventually, 656 images have a color between the gray and the blue.

The class "Cloudless without aurora" contains 3937 images which I divided into six different classes.
There are 777 gray images and 378 dark gray images. There are 1539 black or almost black images.
There are also 264 dark blue images, 151 light blue images and 433 other blue images (between
light and dark blue).

Eventually, we notice that lots of thresholds are difficult to define and some groups contain much
more images than other ones. The obtained sub classes often tend to overlap. Therefore, the
training step could tend to try to optimize the classification between the overlapped classes instead
of focusing on the binary classification between "Aurora" and "No aurora" images. Moreover, it
could ignore the classes containing too few images.

I select the CNN models which offer the best recalls and accuracies on four classes with the testing
data set. The best models using the “ResNet50” were those with two layers of 150 neurons, a
dropout rate of 0.3 and a regularization “L2” (with a regularization rate equal to 0.1 or 0.5).
The best model using “InceptionV3” was the one with two layers of 150 neurons, a dropout rate
of 0.7 and a regularization “L2” with a rate equal to 0.5. Unfortunately, the obtained results
are bad. All images are classified as “images containing auroras and clouds”. I think that the
models try to improve the results by finding the threshold between dark or light blue images for
example. Because these thresholds are also difficult to see for a human, it disrupts the learning
phase. Eventually, the obtained model is not efficient at all.

49

Chapter 8
Conclusion

During this project, I had to automate the auroral detection on all-sky colour images. The recall
was more important to improve than the precision because we did not want to miss auroras. I first
detailed most of the methods used in the previously conducted studies. Then I summarized the
obtained results to decide which methods I could try by myself. A part of the methods did not rely
on deep learning. In this case, the features were extracted thanks to different image processing
algorithms such as SIFT, statistical descriptors, Gray Level Aura Matrices, Local Binary Pattern
or Gabor wavelet decomposition. Then, the dimension of the feature vectors could be reduced
before applying a classification algorithm. Otherwise, a CNN model could directly be applied to
the images.

I first prepared the data sets. I split the available images into four classes: “Images containing
auroras and clouds”, “Images containing auroras but no cloud”, “Images containing clouds but
no aurora” and “Images containing no aurora and no cloud”. The accuracy, the recall and the
precision were computed for two classes: “Images containing auroras” and “Images without aurora”.
I prepared the training and validation data set by splitting a same original data set. I had to be
careful not to have the same images in the training and the validation data sets. However, I had
to have lots of different types of images in each of the data sets. Therefore, I had to remove the
similar images before shuffling and splitting the data set. I also checked the labels and chose to
attribute the label “Image containing auroras” to all images showing faint auroras. I also checked
the labels of the testing data set coming from a season which is different from the training and
testing sets. After preparing the data sets, I tried to choose the best classification model. I first
used methods which do not require to use CNN. Then, I focused on the methods using CNN.

I describe here the selection of the model which did not require CNN models. I chose to select a
dimension reducer and a classifier to compare different feature extraction algorithms. The chosen
dimension reducer UMAP only required choosing K, the number of neighbours to consider, and d
the smallest distance between two points in the new space. Moreover, it often provides satisfying
results. I chose K = 100 and d = 0. The chosen classifier was a random forest which does not
require to optimize parameters and is known as an efficient method too.

The best feature extractors were the OLBPC applied on local areas of the images, and the values
distributions of each channel of the RGB and Lab colour systems. These methods enabled to reach
an accuracy of 80% and a recall of 75%.

Then, I would have wanted to try some other feature extraction algorithms like the Gabor wavelet
decomposition. Then, if I had more time, I would have selected one of the best feature extractors
to try various dimension reduction algorithms and classifiers. The next step was using pretrained

50

CNN models while applying “fine tuning” and adding neural networks to the output to perform
the classification. I selected two pretrained CNN models, “ResNet50” and “InceptionV3”. I fixed
some parameters like the learning rate (0.0001), the batch size (32), the number of epochs during
the training phase (10), the activation functions (ReLU and Softmax), and the optimizer (Adam).
Then, I added different neural network combinations by changing the number of layers and the
number of neurons per layer, the dropout rate and the regularisation function.

The first aim was to compare the two different pretrained models with the same neural network
combinations to see if the model has an impact. I describe here the results obtained by applying
the classification models to the validation data set. Whatever the neural network combination,
the “InceptionV3” model gave more stable results. Nevertheless, for most of the neural network
combinations, the results were similar for the “ResNet50” model and the “InceptionV3” model. The
second aim was to see if some neural network combinations can enable better classifications. Among
the best models, the accuracies and recalls were close to each other. However, the regularization
“L2” was the single one which offered satisfying results. Moreover, some combinations, like those
with three layers, mainly gave poor results. The obtained recalls and accuracies were superior to
90%. However, it seemed impossible to exceed 93%. The CNN models gave much better results
than the methods without CNN.

Because the obtained results were a little bit different according to the chosen CNN models, I
would have wanted to test other models. I also wanted to apply cross validation to establish mean
accuracies and uncertainty ranges, but I did not have enough time.

Then I selected the most promising methods to apply them to the testing data set. Indeed, because
of a lack of time, I chose to proceed to the testing phase only for the CNN models. The obtained
results were a little bit lower than those obtained on the validation data set. It allowed to select
three models which offered better results than the other ones. If we consider the recall and the
accuracy, the best models using the “ResNet50” were those with two layers of 150 neurons, a
dropout rate of 0.3 and a regularization “L2” (with a regularization rate equal to 0.1 or 0.5). It
enabled to reach a recall of 86%, a precision of 94% and an accuracy of 89% on the testing data.
The best model using “InceptionV3” was the one with two layers of 150 neurons, a dropout rate
of 0.7 and a regularization “L2” with a rate equal to 0.5. It enabled to reach an accuracy of 88%,
a recall of 87% and a precision of 92% on the testing data. Unfortunately, the recall was always
worse than the precision. It was probably due to the fact that all faint auroras had been classified
as auroras. When I displayed the misclassified images, we could notice that the “false negatives”
and the “false positives” had the same aspect. It was dark blue or grey images, with faint auroras
or clouds. The classification would also be difficult for a human.

The last step consisted in creating homogeneous classes to proceed to a classification thanks to the
CNN models. Indeed, a same class contained lots of different types of images while two different
classes could contain similar images. Therefore, splitting the original classes into homogeneous
sub classes could keep the model from relying on features which were often but not systematically
associated with a given class. Unfortunately, the classes were difficult to divide. Some thresholds
were fuzzy, and the obtained classes had very different sizes. I selected the CNN models which
offered the best recalls and accuracies on four classes with the testing data set, but the obtained
results were bad. All images were classified as “images containing auroras and clouds”. Indeed,
the models probably tried to improve the results by finding the threshold between dark or light

51

blue images for example, which was almost impossible because this threshold is even unclear for
humans.

This automation of the detection will help scientists to establish the periods of time during which
the auroras appear. It also will help to create a real time detector of auroras.

52

Bibliography

[1] M. Z. Alom, T. Taha, M. Nasrin et al., ‘A state-of-the-art survey on deep learning theory and
architectures,’ Electronics, vol. 8, p. 292, 5th Mar. 2019. doi: 10.3390/electronics8030292
(cit. on p. 25).

[2] L. Breiman, ‘Random forests,’ Machine Learning, vol. 45, no. 1, pp. 5–32, 1st Oct. 2001,
issn: 1573-0565. doi: 10.1023/A:1010933404324. [Online]. Available: https://doi.org/
10.1023/A:1010933404324 (visited on 11th Aug. 2022) (cit. on pp. 20, 22).

[3] L. B. N. Clausen and H. Nickisch, ‘Automatic classification of auroral images from the
oslo auroral THEMIS (OATH) data set using machine learning,’ Journal of Geophysical
Research: Space Physics, vol. 123, no. 7, pp. 5640–5647, 2018, issn: 2169-9402. doi: 10.
1029/2018JA025274. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1029/2018JA025274 (visited on 11th Apr. 2022) (cit. on pp. 21, 26, 29).

[4] T. Evgeniou and M. Pontil, ‘Support vector machines: Theory and applications,’ vol. 2049,
1st Jan. 2001, pp. 249–257. doi: 10.1007/3-540-44673-7_12 (cit. on pp. 20, 21).

[5] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition,’ in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), ISSN: 1063-6919,
Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90 (cit. on p. 26).

[6] D. Heeger and J. Bergen, ‘Pyramid-based texture analysis/synthesis,’ in Proceedings., Inter-
national Conference on Image Processing, vol. 3, Oct. 1995, 648–651 vol.3. doi: 10.1109/
ICIP.1995.537718 (cit. on pp. 11, 12, 59).

[7] ‘Kjell henriksen observatory (KHO).’ (), [Online]. Available: http://kho.unis.no/ (visited
on 27th Jul. 2022) (cit. on p. 2).

[8] A. Kvammen, K. Wickstrøm, D. McKay and N. Partamies, ‘Auroral image classification with
deep neural networks,’ Journal of Geophysical Research: Space Physics, vol. 125, no. 10,
e2020JA027808, 2020, issn: 2169-9402. doi: 10.1029/2020JA027808. [Online]. Available:
https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1029 / 2020JA027808 (visited on
14th Aug. 2022) (cit. on pp. 26, 29).

[9] L. V. D. Maaten and G. E. Hinton, ‘Visualizing data using t-SNE,’ undefined, 2008. [Online].
Available: https://www.semanticscholar.org/paper/Visualizing-Data-using-t-SNE-
Maaten-Hinton/1c46943103bd7b7a2c7be86859995a4144d1938b (visited on 7th Aug. 2022)
(cit. on p. 19).

[10] B. Manjunath and W.-Y. Ma, ‘Texture features for browsing and retrieval of image data,’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, pp. 837–842, 1st Aug. 1996. doi: 10.1109/
34.531803 (cit. on pp. 12, 17).

[11] L. McInnes and J. Healy, ‘UMAP: Uniform manifold approximation and projection for di-
mension reduction,’ 9th Feb. 2018 (cit. on pp. 19, 20).

53

https://doi.org/10.3390/electronics8030292
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1029/2018JA025274
https://doi.org/10.1029/2018JA025274
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025274
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025274
https://doi.org/10.1007/3-540-44673-7_12
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICIP.1995.537718
https://doi.org/10.1109/ICIP.1995.537718
http://kho.unis.no/
https://doi.org/10.1029/2020JA027808
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JA027808
https://www.semanticscholar.org/paper/Visualizing-Data-using-t-SNE-Maaten-Hinton/1c46943103bd7b7a2c7be86859995a4144d1938b
https://www.semanticscholar.org/paper/Visualizing-Data-using-t-SNE-Maaten-Hinton/1c46943103bd7b7a2c7be86859995a4144d1938b
https://doi.org/10.1109/34.531803
https://doi.org/10.1109/34.531803

[12] G. Pandiselvi, V. Umamaheswari, S. P. Jothi and C. Balasubramanian, ‘Steerable pyramid
decomposition – rotation & scale invariant texture image retrieval,’ p. 5, 2016 (cit. on pp. 11,
12, 59).

[13] X. Qin and Y.-H. Yang, ‘Similarity measure and learning with gray level aura matrices
(GLAM) for texture image retrieval,’ presented at the Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 1, 1st Jan. 2004, pp. I–
326, isbn: 978-0-7695-2158-9. doi: 10.1109/CVPR.2004.1315050 (cit. on pp. 11, 14).

[14] J. Rao, N. Partamies, O. Amariutei, M. Syrjäsuo and K. E. A. van de Sande, ‘Automatic
auroral detection in color all-sky camera images,’ IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 7, no. 12, pp. 4717–4725, Dec. 2014, Conference
Name: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
issn: 2151-1535. doi: 10.1109/JSTARS.2014.2321433 (cit. on pp. 9–11, 16, 17, 21, 28, 39).

[15] S. T. Roweis and L. K. Saul, ‘Nonlinear dimensionality reduction by locally linear embed-
ding,’ Science, vol. 290, no. 5500, pp. 2323–2326, 22nd Dec. 2000, Publisher: American As-
sociation for the Advancement of Science. doi: 10.1126/science.290.5500.2323. [Online].
Available: https://www.science.org/doi/10.1126/science.290.5500.2323 (visited on
7th Aug. 2022) (cit. on p. 61).

[16] P. Sado, L. B. N. Clausen, W. J. Miloch and H. Nickisch, ‘Transfer learning aurora image
classification and magnetic disturbance evaluation,’ Journal of Geophysical Research: Space
Physics, vol. 127, no. 1, e2021JA029683, 2022, issn: 2169-9402. doi: 10.1029/2021JA029683.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1029/2021JA029683
(visited on 11th Apr. 2022) (cit. on pp. 21, 26, 29, 41).

[17] E. Simoncelli, W. Freeman, E. Adelson and D. Heeger, ‘Shiftable multiscale transforms,’
IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 587–607, Mar. 1992, Conference
Name: IEEE Transactions on Information Theory, issn: 1557-9654. doi: 10.1109/18.119725
(cit. on pp. 15, 59).

[18] S. Singh, D. Srivastava and S. Agarwal, ‘GLCM and its application in pattern recognition,’
in 2017 5th International Symposium on Computational and Business Intelligence (ISCBI),
Aug. 2017, pp. 20–25. doi: 10.1109/ISCBI.2017.8053537 (cit. on pp. 11, 58).

[19] M. Syrjasuo, E. Donovan and M. Peura, ‘Using attribute trees to analyse auroral appearance
over canada,’ in Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV
2002). Proceedings., Dec. 2002, pp. 289–295. doi: 10.1109/ACV.2002.1182196 (cit. on p. 9).

[20] M. Syrjasuo and N. Partamies, ‘Numeric image features for detection of aurora,’ IEEE
Geoscience and Remote Sensing Letters, vol. 9, no. 2, pp. 176–179, Mar. 2012, Conference
Name: IEEE Geoscience and Remote Sensing Letters, issn: 1558-0571. doi: 10.1109/LGRS.
2011.2163616 (cit. on pp. 11, 14, 17, 21, 28, 39, 40).

[21] M. Syrjäsuo, ‘Automatic classification of auroral images in substorm studies,’ Proc. 8th ICS,
pp. 309–313, 1st Jan. 2007 (cit. on pp. 8, 11, 14, 21, 29).

[22] M. Syrjäsuo and E. Donovan, ‘Analysis of auroral images: Detection and tracking,’ vol. 38,
1st Jan. 2002 (cit. on pp. 8, 12, 21, 28).

[23] M. T. Syrjäsuo and E. F. Donovan, ‘Diurnal auroral occurrence statistics obtained via ma-
chine vision,’ Annales Geophysicae, vol. 22, no. 4, pp. 1103–1113, Apr. 2004, Publisher:
European Geosciences Union. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-00317287 (visited on 7th Jul. 2022) (cit. on pp. 12, 17, 21, 28, 39, 40).

54

https://doi.org/10.1109/CVPR.2004.1315050
https://doi.org/10.1109/JSTARS.2014.2321433
https://doi.org/10.1126/science.290.5500.2323
https://www.science.org/doi/10.1126/science.290.5500.2323
https://doi.org/10.1029/2021JA029683
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021JA029683
https://doi.org/10.1109/18.119725
https://doi.org/10.1109/ISCBI.2017.8053537
https://doi.org/10.1109/ACV.2002.1182196
https://doi.org/10.1109/LGRS.2011.2163616
https://doi.org/10.1109/LGRS.2011.2163616
https://hal.archives-ouvertes.fr/hal-00317287
https://hal.archives-ouvertes.fr/hal-00317287

[24] C. Szegedy, W. Liu, Y. Jia et al., ‘Going deeper with convolutions,’ in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), ISSN: 1063-6919, Jun. 2015, pp. 1–9.
doi: 10.1109/CVPR.2015.7298594 (cit. on p. 27).

[25] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, ‘Rethinking the inception ar-
chitecture for computer vision,’ in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 2818–2826, isbn: 978-1-
4673-8851-1. doi: 10.1109/CVPR.2016.308. [Online]. Available: http://ieeexplore.ieee.
org/document/7780677/ (visited on 28th Jul. 2022) (cit. on p. 27).

[26] F. Tang, S. H. Lim, N. L. Chang and H. Tao, ‘A novel feature descriptor invariant to complex
brightness changes,’ in 2009 IEEE Conference on Computer Vision and Pattern Recognition,
ISSN: 1063-6919, Jun. 2009, pp. 2631–2638. doi: 10.1109/CVPR.2009.5206550 (cit. on
pp. 11, 14).

[27] J. B. Tenenbaum, V. d. Silva and J. C. Langford, ‘A global geometric framework for non-
linear dimensionality reduction,’ Science, vol. 290, no. 5500, pp. 2319–2323, 22nd Dec. 2000,
Publisher: American Association for the Advancement of Science. doi: 10.1126/science.
290.5500.2319. [Online]. Available: https://www.science.org/doi/10.1126/science.
290.5500.2319 (visited on 7th Aug. 2022) (cit. on pp. 19, 60).

[28] UCAR/COMET. ‘The sun, the earth, and near-earth space, 2nd edition.’ (), [Online]. Avail-
able: https : / / www . meted . ucar . edu / spaceweather / sun _ earth _ space/ (visited on
27th Jul. 2022) (cit. on pp. 4, 5).

[29] Q. Wang, J. Liang, Z.-J. Hu et al., ‘Spatial texture based automatic classification of dayside
aurora in all-sky images,’ Journal of Atmospheric and Solar-Terrestrial Physics, vol. 72, no. 5,
pp. 498–508, 1st Apr. 2010, issn: 1364-6826. doi: 10.1016/j.jastp.2010.01.011. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1364682610000441
(visited on 20th Jul. 2022) (cit. on pp. 11, 14, 21, 29).

[30] Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli, ‘Image quality assessment: From error
visibility to structural similarity,’ IEEE Transactions on Image Processing, vol. 13, no. 4,
pp. 600–612, Apr. 2004, Conference Name: IEEE Transactions on Image Processing, issn:
1941-0042. doi: 10.1109/TIP.2003.819861 (cit. on pp. 34, 35).

[31] Xuejie Qin and Yee-Hong Yang, ‘Basic gray level aura matrices: Theory and its application to
texture synthesis,’ in Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, Beijing, China: IEEE, 2005, 128–135 Vol. 1, isbn: 978-0-7695-2334-7. doi: 10.
1109 / ICCV . 2005 . 43. [Online]. Available: http : / / ieeexplore . ieee . org / document /
1541248/ (visited on 18th Jul. 2022) (cit. on pp. 11, 14, 58).

55

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
http://ieeexplore.ieee.org/document/7780677/
http://ieeexplore.ieee.org/document/7780677/
https://doi.org/10.1109/CVPR.2009.5206550
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://www.science.org/doi/10.1126/science.290.5500.2319
https://www.science.org/doi/10.1126/science.290.5500.2319
https://www.meted.ucar.edu/spaceweather/sun_earth_space/
https://doi.org/10.1016/j.jastp.2010.01.011
https://www.sciencedirect.com/science/article/pii/S1364682610000441
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ICCV.2005.43
https://doi.org/10.1109/ICCV.2005.43
http://ieeexplore.ieee.org/document/1541248/
http://ieeexplore.ieee.org/document/1541248/

Chapter 9
Annexes

9.1 Annex A : Gantt diagrams

Figure 9.1: Gantt diagram created in the beginning of the project

56

Figure 9.2: Gantt diagram corrected at the end of the project

57

9.2 Annex B : Features extraction

9.2.1 Gray Level Cooccurence Matrix (GLCM)
The Gray Level Cooccurence Matrix (GLCM) allows to count the pairs of pixels (with gray levels
i and j) having a given relative position [31] [18]:

Pd(i, j) = card((x, y)/I(x, y) = i and I(x + dx, y + dy) = j)

with d = (r, θ)

r : the chosen distance

θ : the chosen direction

We obtain a matrix for each direction and each distance. These matrices contain lots of zeros.
Therefore, it is difficult to exploit.

Moreover, it is not invariant under contrast changes or geometrical distortions.

To define the texture, we can use the seven Haralick parameters, which are defined as follows :

The homogeneity :
fh = 1

N2
c

∑
i

∑
j

P 2
d (i, j)

The contrast :
fc = 1

Nc(L − 1)2

L−1∑
n=0

[n2.
∑

|i−j|=n

Pd(i, j)]

The correlation :
f0 = 1

Nc.σxσy

|
∑

i

∑
j[ij.Pd(i, j) − µxµy]|

The local homogeneity :
f1 = 1

Nc

∑
i

∑
j

1
1 + (i − j)2 Pd(i, j)

The entropy :
fe = 1 − 1

Nc.log(Nc)
∑

i

∑
j

Pd(i, j).log[Pd(i, j)]

The uniformity of the energy :
funif = 1

N2
c

∑
n

P 2
d (n, n)

The directivity :
fdir = 1

Nc

∑
n

Pd(n, n)

58

9.2.2 Steerable pyramid
We apply a low pass filter and a high pass filter to the same image [17]. The low pass filters can be
median or Gaussian for example. To apply a high pass filter, we can for example use the Fourier
transform and keep the high frequencies. We obtain two filtered images [6] [12].

Then, on the image filtered with the low pass filter, we apply a chosen number of oriented filters.
It allows a features extraction along different directions.

The following image (Figure 9.3) details each step of the steerable pyramid.

Figure 9.3: Schematic representation of the steerable pyramid

The orientations decomposition has to be steerable. It means that the resulted image after applying
an oriented filtered can be broken down into a sum of responses of basic filters.

For N filters, the oriented filter of index n Bn is defined in the frequency domain as follows :
Bn(ω) = B(ω)(−jcos(θ − θn)k−1)

B : the basic filter

ω : the frequency

θ : the angle associated to the frequency ω

θn : the filter′s orientation

The steerable pyramid corresponds to a non orthogonal basis. It minimizes the aliasing by meeting
the Nyquist criterion. However, it induces information redundancy. Indeed, the number of pixels
in the pyramid is higher than the number of pixels in the image.

The distance between two images can be computed in a similar manner as with the Gabor Wavelet
decomposition. As previously mentioned, the steerable pyramid can be computed before applying
the BGLAM to each level of the pyramid.

59

9.3 Annex C : Dimensionality reduction

9.3.1 Isometric mapping (ISOMAP)
The main idea of the ISOMAP algorithm is to consider the geodesic distance [27]. The first step is
to determine which points are neighbours. In the original space of the dataset, we use the Euclidean
distance to find, for each point Xi, all points Xj within a certain radius ϵ. These relationships
of neighbourhood are represented by a graph G. The nodes correspond to the points Xi and
the edge’s weights correspond to the Euclidean distance between Xi and Xj. If Xk and Xl are
not neighbours, the edge is initialized to ∞. The second step consists in computing the geodesic
distances. For each pair of points (Xi, Xj), we compute the geodesic distance dG(i, j) based on the
graph G by applying the shortest path algorithm. Thanks to the previously described steps, we
can create a matrix of the distances. The last step is the dimensionality reduction. The original
dataset, X = {X1, ..., Xn}, corresponds to a set of points located in a space with d dimensions. The
idea is to project this data in a new space with d′(d′ < d) dimensions. This new representation is
named Y and Y = {Y1, ..., Yn}. δij corresponds to the distance between Xi and Xj. dij corresponds
to the distance between Yi and Yj. The aim is to find the configuration for which the distances
δij and dij are as similar as possible. It is usually impossible to find a configuration with dij = δij

for each i and j. There are comparison criteria which are invariant under affine translations. The
following value is one of the possible criteria :

Jee =
∑

i<j(dijδij)2∑
i<j δ2

ij

We want to find a configuration which minimise these criteria. We can use a gradient descent.
But, in fact, we can use linear algebra. The first step consists in computing the square distances
matrix. Then, the distances are centered. If the dataset contains n points, we define the following
matrix :

J = In×n − 1
n

1n×n

with I the identity matrix and 1 a matrix of ones

We can compute the matrix of centered distances :
B = −1

2JP 2J

Then, we extract the eigenvalues and the eigenvectors from the matrix B. We keep the d′ greatest
eigenvalues λi and the associated eigenvectors Vi. The last step consists in finding the new coordin-
ates of the data set Y = {Y1, ..., Yn}. We compute D, the matrix containing these coordinates, as
follows :

D = Vd′L
1
2
d′

with L
1
2
d′ the diagonal matrix containing the d′ greatest eigenvalues

and Vd′ : the matrix containing the d′ associated eigenvectors

60

9.3.2 Locally Linear Embedding (LLE)
If the density is great enough, we can consider that the dataset is locally approximately linear [15].
The first step consists in K nearest neighbours of each point Xi. Then, we can express each point
on the basis of its neighbourhood with linear coefficients. The reconstruction errors are computed
as follows :

E(W) =
n∑

i=1
||Xi −

∑
WijXj||2

with Wij : the coefficients of the matrix which correspond to the

weight of the contribution of the point j for the reconstruction of the point i

We are looking for the matrix W whose elements minimise the reconstruction error. If Xi is not in
the neighbourhood of Xj, we choose Wij = 0. To be invariant under translation, we have to meet
the following condition :

n∑
j=1

Wij = 1

Eventually, based on the weights previously found, we look for the points Y = {Y1, ..., Yn}, which
allow to minimise the following reconstruction error :

E(Y) =
n∑

i=1
||Yi −

∑
j ̸=i

WijYij||2

The solution can be found thanks to eigenvalues and eigenvectors, like for the ISOMAP algorithm.

61

9.4 Annex D : Classification

9.4.1 Bayesian classifier
The Bayesian classification is based on the Bayes theorem. Let C be the class depending on the
features Fi (for 1 < i < n). We can write :

P (C|F1, ..., Fn) = p(C)p(F1, ..., Fn|C)
p(F1, ..., Fn)

Because the denominator does not depend on C and the feature’s values are given, we only focus
on the numerator. We have the following equality :

p(C)p(F1, ..., Fn|C) = p(C)p(F1|C)p(F2, ..., Fn|C, F1) = p(C)p(F1|C)p(F2|C)...p(Fn|C)

If each feature is independent from the other ones, we can write :
p(Fi|C, Fj) = p(Fi|C)

Therefore, we obtain the following equality :
p(F1, ..., Fn|C) = p(F1|C)p(F2|C)...p(Fn|C) = Πn

i=1p(Fi|C)

And eventually :
p(C|F1, ..., Fn) = 1

Z
p(C)Πn

i=1p(Fi|C)

With Z : a constant value

The prior probabilities of the different classes can be computed assuming that the classes have
equal probabilities or by estimating the probabilities of each class on the basis of the available
data.

To estimate the parameters of the probability distribution related to a specific feature, we have to
assume the type of the distribution. We assume that we have a normal distribution.

µ = 1
N

N∑
i=1

xi

σ2 = 1
N − 1

N∑
i=1

(xiµ)2

To estimate the most probable class cl, we use the maximum a posteriori (MAP) estimation
method.

cl = argmaxcp(C = c)Πn
i=1p(Fi = fi|C = c)

If we assume that all classes have the same probability, we can write :
p(Fi = fi|C = c) = fg,v(x) = 1√

2πσ2
g,v

e
−1

2σ2
g,v

(x−µg,v)2

This method only requires to know the mean and the variance of the different features for each
class. These parameters do not require lots of training data to be estimated. However, this method
gives poorer results than a random forest algorithm.

62

9.5 Annex E : Image samples of the created subclasses

9.5.1 Cloudy sky with auroras

Figure 9.4: Blue images containing auroras and clouds

Figure 9.5: Brown and green images containing auroras and clouds

Figure 9.6: Gray images containing auroras and clouds

63

9.5.2 Cloudless sky with auroras

Figure 9.7: Black images containing auroras but no cloud

Figure 9.8: Dark blue images containing auroras but no cloud

Figure 9.9: Gray images containing auroras but no cloud

64

Figure 9.10: Blue images containing auroras but no cloud

Figure 9.11: Black and green images containing auroras but no cloud

9.5.3 Cloudy sky without aurora

Figure 9.12: Black and brown images containing clouds but no aurora

65

Figure 9.13: Brown images containing clouds but no aurora

Figure 9.14: Gray images containing clouds but no aurora

Figure 9.15: Light blue images containing clouds but no aurora

66

Figure 9.16: Blue images containing clouds but no aurora

Figure 9.17: Dark blue images containing clouds but no aurora

Figure 9.18: Gray and blue images containing clouds but no aurora

67

9.5.4 Cloudless sky without aurora

Figure 9.19: Gray images containing no cloud and no aurora

Figure 9.20: Dark gray images containing no cloud and no aurora

Figure 9.21: Dark blue and black images containing no cloud and no aurora

68

Figure 9.22: Dark blue images containing no cloud and no aurora

Figure 9.23: Blue images containing no cloud and no aurora

Figure 9.24: Light blue images containing no cloud and no aurora

69

	Introduction
	The University Centre in Svalbard (UNIS) and the Kjell Henriksen Observatory
	The University Centre in Svalbard (UNIS)
	The Kjell Henriksen Observatory

	Camera and data description
	Auroral activity
	State of the art
	Preprocessing
	Features extraction
	Edges and regions based methods
	Scale, rotation and translation invariant features
	Scale Invariant Feature Transform (SIFT) for gray scale images
	Scale Invariant Feature Transform (SIFT) for coloured images

	Textures descriptors
	First order statistics
	Brightness distribution
	Ordinal Spatial Intensity Distribution (OSID)
	Gray Level Aura Matrix (GLAM)
	Structural and geometrical approach : Local Binary Pattern (LBP)
	Gabor wavelet decomposition

	Dimensionality reduction
	t-distributed stochastic neighbor embedding (t-SNE)
	Uniform Manifold Approximation and Projection (UMAP)

	Classification
	Linear regression and ridge classification
	Support Vector Machine (SVM)
	K-Nearest Neighbours (KNN)
	Decision tree and random forest
	Neural Network

	Convolutional Neural Network (CNN)
	Principle
	Transfer learning

	Results obtained in different articles dealing with various contexts of classification

	Strategy
	Implementation
	Data preparation
	Structural Similarity Index (SSIM)

	Selection of the models
	Selection of methods without using CNN
	Selection of the CNN models

	Testing the CNN models
	Applying CNN models to homogeneous sub classes

	Conclusion
	Annexes
	Annex A : Gantt diagrams
	Annex B : Features extraction
	Gray Level Cooccurence Matrix (GLCM)
	Steerable pyramid

	Annex C : Dimensionality reduction
	Isometric mapping (ISOMAP)
	Locally Linear Embedding (LLE)

	Annex D : Classification
	Bayesian classifier

	Annex E : Image samples of the created subclasses
	Cloudy sky with auroras
	Cloudless sky with auroras
	Cloudy sky without aurora
	Cloudless sky without aurora

