A Simple Auroral Forecaster

F. Sigernes ¹, S. E. Holmen ¹, M. Dyrdal ¹, A. L. Bækken ², P. Brekke ³, S. Chernouss ⁴, D.A. Lorentzen ¹, and C. S. Deehr ⁵

¹ The University Centre in Svalbard (UNIS), N-9171 Longyearbyen, Norway
² University of Oslo, Oslo, Norway
³ Norwegian Space Centre, Oslo, Norway
⁴ Polar Geophysical Institute, Murmansk Region, Apatity, Russia
⁵ Geophysical Institute, University of Alaska, Fairbanks, USA

Lunch seminar, University of Oslo, V316, 29 May 2012, Norway.
METHOD A: The Feldstein-Starkov ovals

Poleward and equatorward boundaries of auroral oval in geomagnetic co-latitude:

\[\theta = A_0 + A_1 \cos[15(t + \alpha_1)] + A_2 \cos[15(2t + \alpha_2)] + A_3 \cos[15(3t + \alpha_3)], \]

where amplitudes \(A_i \) and phases \(\alpha_i \) is given by

\[A_i \text{ or } \alpha_i = b_0 + b_1 \log_{10}|AL| + b_2 \log_{10}^2|AL| + b_3 \log_{10}^3|AL|. \]

The magnetic input parameter is the AL index – related to the planetary Kp index:

\[AL = 18 - 12.3 \cdot K_p + 27.2 \cdot K_p^2 - 2 \cdot K_p^3. \]

REFERENCES

2 MATHEMATICAL REPRESENTATIONS OF THE AURORAL OVALS

METHOD B: The Zhang-Paxton ovals

The electron energy flux is derived from GUVI imager data (TIMED satellite)

\[
Q_m = \frac{A_{0m}' \cdot \exp\left(\frac{x - A_{1m}'}{A_{2m}'}\right)}{\left(1 + \exp\left(\frac{x - A_{1m}'}{A_{3m}'}\right)\right)^2}, \quad x = \pi/2 - |\theta|
\]

where \(x\) is co-magnetic latitude. The coefficients \(A'\) is are calculated as

\[
A_{im}' = b_{0m}' + \sum_{n=1}^{6} \left(b_{nm}' \cos\left(\frac{n\pi t}{12}\right) + b_{nm}'' \sin\left(\frac{n\pi t}{12}\right) \right).
\]

The coefficients \(b'\) is tabulated as a function of six sub-intervals (\(m\)) of Kp index.

REFERENCE

GEOGRAPHICAL TRANSFORM

Cartesian components:

\[x_m = \sin \theta \cdot \cos \phi \]
\[y_m = \sin \theta \cdot \sin \phi \]
\[z_m = \cos \theta \]

\[\phi = 2\pi \cdot t / 24 + \Delta \phi(t) \]
\[\Delta \phi(t) \text{ - is the longitudinal difference between the sub-solar point and the magnetic poles at time } t \text{ (hours).} \]

Geographical coordinates:

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix} =
\begin{bmatrix}
 \cos \phi_0 \cos \lambda & -\sin \phi_0 & \cos \phi_0 \sin \lambda \\
 \sin \phi_0 \cos \lambda & \cos \phi_0 & \sin \phi_0 \sin \lambda \\
 -\sin \lambda & 0 & \cos \lambda
\end{bmatrix}
\begin{bmatrix}
 x_m \\
 y_m \\
 z_m \\
\end{bmatrix}
\]

\[\theta_0' = 82.41^\circ N \]
\[\phi_0' = -82.86^\circ E \]
\[\lambda = \pi / 2 - \theta_0' \]

Latitude and longitude:

\[\theta' = \frac{\pi}{2} - \cos^{-1}(z) \]
\[\phi' = \begin{cases}
\psi & x > 0 \\
\psi + \pi & x < 0
\end{cases} \]
\[\psi = \tan^{-1}(y / x) \]
The ovals are visualized with a stand alone 32-bit executable Windows program called **SvalTrackII**.

The program is written in Borland Delphi 5 – Pascal and uses a Geographic Information system (GIS) unit called TGlobe.

Includes:

Method A
1. Equatorward boundary of the diffuse aurora
2. Feldstein & Starkov oval
3. Field of view aurora observer

Method (B)
4. Zhang & Paxton oval
5. Observer location
6. Moon and Sun information at local site

The twilight zone, night- and dayside of the Earth are projected with grades of shade on the Globe as a function of time.
All Sky Satellite View

Local all sky satellite view of ovals as a function of Kp index [0…8] and time for 24th Dec. 2009 from KHO (78N,16E).

Based on Feldstein & Starkov and TLE element SGP4 code by [4]

All Sky Star View

Local all sky star view of ovals as a function of Kp index [0…8] and time for 24th Dec. 2009 from KHO (78N,16E).

Based on Feldstein & Starkov ovals and Sky Charts software by [5]

Catalog: BSC5

ANIMATION

Animated aurora ovals as a function of Kp index [0…8] at 08:50 UT, 24th December 2009
MODEL COMPARISON

<table>
<thead>
<tr>
<th>Kp</th>
<th>Auroral activity</th>
<th>Level</th>
<th>$A \cap B$ [%]</th>
<th>$B \cap C$ [%]</th>
<th>Q_{max} [mW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Very low</td>
<td>Low normal</td>
<td>32</td>
<td>99</td>
<td>1.65</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>Low normal</td>
<td>26</td>
<td>86</td>
<td>2.10</td>
</tr>
<tr>
<td>2</td>
<td>Low normal</td>
<td>Low normal</td>
<td>33</td>
<td>87</td>
<td>3.20</td>
</tr>
<tr>
<td>3</td>
<td>Normal</td>
<td>Normal</td>
<td>35</td>
<td>87</td>
<td>4.34</td>
</tr>
<tr>
<td>4</td>
<td>Calm storm</td>
<td>Storm</td>
<td>36</td>
<td>89</td>
<td>5.34</td>
</tr>
<tr>
<td>5</td>
<td>Minor storm</td>
<td>Storm</td>
<td>35</td>
<td>88</td>
<td>6.45</td>
</tr>
<tr>
<td>6</td>
<td>Moderate storm</td>
<td>Storm</td>
<td>32</td>
<td>84</td>
<td>8.36</td>
</tr>
<tr>
<td>7</td>
<td>Strong storm</td>
<td>Storm</td>
<td>30</td>
<td>83</td>
<td>12.18</td>
</tr>
<tr>
<td>8</td>
<td>Severe storm</td>
<td>Storm</td>
<td>24</td>
<td>68</td>
<td>12.91</td>
</tr>
<tr>
<td>9</td>
<td>Extreme storm</td>
<td>Storm</td>
<td>22</td>
<td>62</td>
<td>18.10</td>
</tr>
</tbody>
</table>

Auroral intersections: (A) Zhang-Paxton, (B) Feldstein-Starkov and (C) Equatorward boundary of diffuse aurora

$Q_{min} = 0.25 \ ergs \ cm^{-2} \ s^{-1}.$
THE +1 or +4 HOUR PREDICTED Kp INDEX

SOURCE: Space Weather Prediction Centre (SWPC) at the National Oceanic and Atmospheric Administration (NOAA).

The Wing Kp predicted Activity Index model.

Reference

It is a neural network algorithm that trains on the response of the Kp geomagnetic activity index to solar wind parameters/data. It predicts +1 or +4 hours ahead.

The model returns an one hour prediction in units of Kp. It updates/predicts every 15 minutes.

15 minutes oval update: http://kho.unis.no

http://www.swpc.noaa.gov/wingkp/
THE KHO AURORAL OVAL FORECAST SERVICE

- **SERVER / PC RUNS SVALTRACKII.EXE**
- **WEB SERVER**
 - http://kho.unis.no

- Kp index
 - NOAA-SWPC (15 min.)
- Weather forecasts
 - YR.NO (60 min.)
- Stations
 - (60 sec.)
- Mobile Auroral forecast
 - +1 or +4 hours predictions
The auroral forecast on a HTC wildfire phone.

QR-code for Android app

In August, as part of the Andøya rocket range 50 years celebration, we will release mobile applications for all smart phones:

1) Android
2) iPhone
3) Windows phone

Company
http://appex.no
Some REMARKS and QUESTIONS

1) As expected the Zhang-Paxton ovals deduced by space borne data are wider than the ground based Feldstein-Starkov ovals.

2) In spite of difference in methods and platforms, the model ovals coincide fairly well in shape for low to normal conditions on the nightside.

3) The equatorward border of the diffuse aurora is well defined by both methods on the nightside for $Kp<7$.

4) On the dayside, there is a need to study further oval shapes for all levels of auroral activity, especially the equatorward border of the diffuse aurora.

5) Is it possible to derive / predict the Kp index from the Norwegian chain of magnetometers, as a real time service?

6) Can other data sources like our new HF radar looking east and future GPS scintillations receiver chains contribute?

7) Optical validation …
Acknowledgement

We wish to thank

1) The National Oceanic and Atmospheric Administration (NOAA) - Space Weather Prediction Centre for allowing us to download the predicted value of the K_p index every 15 minutes.

2) The Research Council of Norway through the project named: Norwegian and Russian Upper Atmosphere Co-operation On Svalbard part 2 # 196173/S30 (NORUSCA2).

3) The Nordic Council of Ministers: Arctic cooperation program # A10162.

PS!
The Svaltrack II program is fredware…it cost II beers.