☰ Menu | Preliminary design plan |
1 The University Centre in Svalbard (UNIS), Norway
2 Norwegian University of Science and Technology (NTNU), Trondheim, Norway
3 University of Oslo, Oslo, Norway

First, the source illumination in the NIR region can be identified in Figure 1. The wavelength region 700 - 1100 nm is less intens compared to the visible part of the spectrum and dominated by two atmospheric absorption bands (O2 and H2O).
The optical diagram is shown in Figure 2. A 300 lines/mm blazed grating is the key element. Blaze angle is 31.7 degrees. The efficiency is above 55% for the wavelength region 700 - 1100 nm. The effective aperture may be set to D0 = D1 = 18 mm which corresponds to ~ F/2.8 The input slit width is fixed with no magnification or demagnification of the height (h = 10 mm). A slit width of w = 50 µm will result in a first order spectral bandpass (FWHM) of 3.33 nm.
The above parts are sufficient to create a prototype hyper spectral imager. All parts may now be embedded into a 3D printed design or a metal housing according to the angles and positions defined in the optical diagram. Note that a right-angle prism can be used between the collimator and the grating to make the design more compact in size. See figure below..
Item | Part / links | Description | Qty | Cost $ |
1 | EO VIS-NIR 50 mm | 50mm C VIS-NIR Series Fixed Focal Length Objective * | 3 | 1785 |
2 | EO 2nd order filter | M30.5 x 0.5 mounted UV/VIS Cut-Off filter | 1 | 76 |
3 | Thorlabs SM1A10 | Adapter ring SM1 - C- mount internal | 2 | 44 |
4 | Thorlabs SM1M10 | SM1 lens tube 1 inch long with internal threads | 1 | 17 |
5 | Thorlabs S50LK | Fixed high precision mounted slit | 1 | 120 |
6 | Thorlabs SM1RC | Slip Ring - SM1 tubes | 1 | 27 |
7 | Thorlabs Spacer Rings | Thorlabs C-mount 0.25-2mm space ring kit | 1 | 119 |
8 | Thorlabs GTI25-03A-NIR | (25 x 25) mm 2 Blazed Trans. grating (300 grooves/mm) | 1 | 116 |
9 | Thorlabs right-angle prism | N-BK7 Right-Angle Prism, Uncoated, L = 25 mm | 1 | 64 |
10 | Sionyx RD board | Black Silicon sensor (12.3 x 9.9) mm2 | 1 | 790 |
11 | 3D printer material | PRUSA Jet Black PETG filament | 1 | 27 |
Total | 14 | 3185 |
Table 1. Detailed part list NIR HSI v7. *One option could be to use the KOWA 50 mm ruggedized lenses instead of the EO VIS-NIR 50 mm proposed lenses used in the HSI v6.
- Fred Sigernes, Mikko Syrjäsuo, Rune Storvold, João Fortuna, Mariusz Eivind Grøtte, and Tor Arne Johansen, Do it yourself hyperspectral imager for handheld to airborne operations, Opt. Express 26, 6021-6035 (2018), https://doi.org/10.1364/OE.26.006021
- M. E. Grøtte, R. Birkeland, E. Honore-Livermore, S. Bakken, J. L. Garrett, E. F. Prentice, F. Sigernes, M. Orlandic, J. T. Gravdahl, T. A. Johansen, Ocean Color Hyperspectral Remote Sensing with High Resolution and Low Latency - the HYPSO-1 CubeSat Mission, IEEE Trans. Geoscience and Remote Sensing, Vol. 60, pp. 1-19 (2022), https://doi.org/10.1109/TGRS.2021.3080175
- M. Henriksen, E. Prentice, C. van Hazendonk, F. Sigernes, and T. Johansen, Do-it-yourself VIS/NIR pushbroom hyperspectral imager with C-mount optics, Opt. Continuum 1, 427-441 (2022), https://doi.org/10.1364/OPTCON.450693
- S. Bakken, M. B. Henriksen, R. Birkeland, D. D. Langer, A. E. Oudijk, S. Berg, Y. Pursley, J. L Garrett, F. Gran-Jansen, E. Honore- Livermore, M. E. Grøtte, B. A. Kristiansen, M. Orlandic, P. Gader, A. J. Sørensen, F. Sigernes, G. Johnsen and T. A. Johansen, HYPSO-1 CubeSat: First Images and In-Orbit Characterization, Remote sensing, 15(3), 755 (2023), https://www.mdpi.com/2072-4292/15/3/755
- Post by Harron, All you need to know about Solar Radiation, http://synergyfiles.com/2016/05/solar-radiation/