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5.3 MHD approach

A simple real plasma consists of electrons and one ion species. The model describing
these as fluids is called as the two fluid model. These two species interact by collisions
and electromagnetic forces (see Chapter 4, ionospheric plasma). However, the most used
plasma theory describes plasma as one fluid and it is called as magnetohydrodynamics. In
plasmas where collisions dominate, this is a natural approach, since collisions thermalize
the distribution functions to Maxwellian and to same temperature. However, MHD
can be used also in collisionless space plasmas, but then one must be aware of the
assumptions made. Those include:

• MHD cannot address discrete or single particle effects such as gyro motion and
small-scale effects (smaller than the ion gyroradius ri).

• MHD equations are valid for much lower frequencies than the plasma frequency
ωpe.

• In Maxwell’s equations the displacement current ε0∂E/∂t has been neglected by
assuming that there are no electromagnetic waves propagating at the speed of
light.

Assuming electrons and single charged ions and neutral plasma ne = ni = n, the total
current density j, the total mass density ρm, effective mass M , and total mass velocity
flux ρmv are given by

j = en(vi − ve) (5.17)

ρm = n(mi + me) (5.18)

M = mi + me (5.19)

ρmv = n(mivi + meve) (5.20)

The MHD momentum equation is presented here without derivation (see e.g. Baumjo-
hann and Treumann, 1999; or Koskinen, 2001) and note analogy to eq. (3.4):

(
∂v

∂t
+ v ·∇v

)

ρm = ρqE + j×B−∇ · P , (5.21)

where ρm is the mass density, ρq the charge density, P the pressure tensor and v is
plasma velocity. If deviations from quasi-neutrality are small (electrically neutral fluid),
term ρqE is small and if the pressure tensor is diagonal, then we get

(
∂v

∂t
+ v ·∇v

)

ρm = j×B−∇p , (5.22)

The term including j×B is the so called Hall term.
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MHD equa.ons 
One‐fluid resis5ve MHD equa5ons: 

When plasma conduc5vity σ=ne2/meνe  –> ∞ , (5.28) => Ideal MHD 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In the ionosphere, eq. (3.9) gives the Ohm’s law, which can be written E+u×B = j/σ.
The generalized Ohm’s law in the MHD presentation for magnetospheric plasma is

E + v ×B =
1

σ
j +

1

ne
j×B− 1

ne
∇ · Pe +

me

ne2

∂j

∂t
, (5.23)

where Pe the electron pressure tensor, me electron mass and σ is the plasma conductivity
defined as

σ =
ne2

meνc
, (5.24)

where νc is the collision frequency between particles. The inverse of σ is η, plasma
resistivity. In the ionosphere, the resistivity is due to interactions between neutrals and
charged particles. In the magnetosphere there are no neutrals and the resistivity is solely
due to the Coulomb interaction between electrons and ions.

If temporal variations are slow, spatial variations small and the Hall term is ignored, we
get the generalized Ohm’s law in the form

E + v ×B =
j

σ
. (5.25)

Below, the resistive MHD equations are collected

∂ρm

∂t
+∇ · (ρmv) = 0 (mass continuity equation) (5.26)

(
∂v

∂t
+ v ·∇v

)

ρm = j×B−∇p (momentum equation) (5.27)

E + v ×B =
j

σ
(generalized Ohm’s law) (5.28)

d

dt
(pρ−γ

m ) = 0 (equation of state) (5.29)

∇×B = µoj (Ampère’s law) (5.30)

∇ · B = 0 (5.31)

∇× E = −∂B

∂t
(Faraday’s law) (5.32)

∇ · E = 0 (Gauss’ law) (5.33)

Instead of the equation of state the conservation of MHD energy can be used.

In a case the plasma conductivity is very large, σ →∞, the right-hand side of eq. (5.28)
goes to zero, and we arrive at the ideal MHD equation,

E + v ×B = 0 ⇒ E = −v ×B . (5.34)

Induc.on equa.on 

convec5on      diffusion 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In space plasmas, often the resistive term (1. term on the right hand side of eq. (5.23))
is smaller than the Hall term (2. term in the same equation) or the pressure gradient
term (3. term), so one should be cautious when selecting the form of generalized Ohm’s
law to be used.

5.4 Plasma convection and diffusion

Let’s start from the resistive MHD Ohm’s law in eq. (5.28)

E + v ×B =
j

σ
(5.35)

and take the curl and use Faraday’s law in eq. (5.32) to get

∂B

∂t
= ∇× (v ×B− j

σ
) . (5.36)

We insert j from Ampère’s law in eq. (5.30) and use the identity (see Appendix A)

∇× (∇×B) = ∇(∇ · B)−∇2B (5.37)

together with eq. (5.31). The result is the induction equation

∂B

∂t
= ∇× (v ×B) +

1

µ0σ
∇2B . (5.38)

The equation above shows that the time rate of change of the magnetic field is controlled
by two terms. The first term, which involves the fluid velocity, is called the convection
term, and the second term, which involves the conductivity, is called the diffusion term.

5.4.1 Diffusion equation

If plasma is at rest (v = 0), the induction equation simplifies to diffusion equation

∂B

∂t
= Dm∇2B , (5.39)

where the diffusion coefficient Dm is

Dm =
1

µ0σ
. (5.40)
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Convec.on 
If σ –> ∞ in eq. (5.38), we get the convec5on equa5on: 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Figure 5.4: Diffusion of magnetic field lines (Baumjohann and Treumann, 1997).

When the plasma conductivity σ is finite, the magnetic field diffuses through plasma in
order to smooth out local inhomogeneities causing non-zero ∇2B (see Fig. .5.4).

The characteristic time of magnetic diffusion is found by replacing by replacing ∇2 by
1/L2

B in eq. (5.38), where LB is the characteristic gradient length of the inhomogeneity
in the magnetic field. Then B can be solved as

Bo = B0 exp(±t/τd) , (5.41)

where the magnetic diffusion time is given by

τd = µ0σL2
B = L2

B/Dm. (5.42)

If σ →∞ (or LB is very large), the diffusion time becomes very long and magnetic field
is not able to diffuse across plasma.

5.4.2 Convection equation

If the plasma conductivity σ →∞, the diffusion term is small and eq. (5.38) yields the
convection equation

∂B

∂t
= ∇× (v ×B) . (5.43)

The situation is like that shown in Fig. 5.5. If plasma moves, the magnetic field lines
must follow, because they can’t diffuse across plasma. It is said that the magnetic field
is frozen in the plasma.

If plasma moves, the magne5c field lines must follow, because they can't diffuse 
across plasma. It is said that the magne5c is frozen in the plasma. 
 

By applying Faraday’s law on the leV hand side of the eq., we immediately see 
that 

which gives an equa5on for plasma velocity 

This approxima5on is valid in most parts of the magnetosphere, but can be violated 
e.g.  at  boundaries  and  in  the  reconnec5on  (magne5c  merging)  regions.  Even 
though conduc5vity is not infinite in the ionosphere, collisions are infrequent in the 
F region and the equa5on above is valid also for plasma in the F region. 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Figure 5.5: Magnetic field lines moving with the plasma (Baumjohann and Treumann,
1997).

If we now replace the left-hand side of the above eqaution with Faraday’s law, we find
immediately that

E = −v ×B (5.44)

which gives an equation for plasma velocity

v =
E×B

B2
. (5.45)

In steady-state ideal magnetohydrodynamics two plasma elements initially on the same
magnetic field line will at a later time also on the same field line. This approximation is
valid in most parts of the magnetosphere, but can be violated e.g. at boundaries and in
the reconnection (magnetic merging) regions. Even though conductivity is not infinite in
the ionosphere, collisions are infrequent in the F region and the equation above is valid
also for plasma in the F region. In the ionospheric E region collisions between ions and
neutrals play an important role and eq. (5.45) doesn’t hold for the plasma as a whole
(only for electrons).

The concurrent drift of plasma and magnetic field lines as a whole is called convection.
In a plasma with infinite conductivity, the electric field is zero in the frame of reference
moving with the plasma at the convection velocity. However, (according to the Lorentz
transformation), an observer in the Earth’s fixed frame of reference will measure the
electric field given by eq. (5.44). This electric field is known as the convection electric
field.
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Diffusion 

If plasma is at rest (v = 0), the induc5on equa5on simplifies to diffusion equa5on 

where the diffusion coefficient Dm is 

The characteris5c 5me of magne5c diffusion is found by replacing V2 by 1/LB2, 
where LB is the characteris5c gradient length of the inhomogeneity in the 
magne5c field. Then B can be solved as
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In space plasmas, often the resistive term (1. term on the right hand side of eq. (5.23))
is smaller than the Hall term (2. term in the same equation) or the pressure gradient
term (3. term), so one should be cautious when selecting the form of generalized Ohm’s
law to be used.

5.4 Plasma convection and diffusion

Let’s start from the resistive MHD Ohm’s law in eq. (5.28)

E + v ×B =
j

σ
(5.35)

and take the curl and use Faraday’s law in eq. (5.32) to get

∂B

∂t
= ∇× (v ×B− j

σ
) . (5.36)

We insert j from Ampère’s law in eq. (5.30) and use the identity (see Appendix A)

∇× (∇×B) = ∇(∇ · B)−∇2B (5.37)

together with eq. (5.31). The result is the induction equation

∂B

∂t
= ∇× (v ×B) +

1

µ0σ
∇2B . (5.38)

The equation above shows that the time rate of change of the magnetic field is controlled
by two terms. The first term, which involves the fluid velocity, is called the convection
term, and the second term, which involves the conductivity, is called the diffusion term.

5.4.1 Diffusion equation

If plasma is at rest (v = 0), the induction equation simplifies to diffusion equation

∂B

∂t
= Dm∇2B , (5.39)

where the diffusion coefficient Dm is

Dm =
1

µ0σ
. (5.40)
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Figure 5.4: Diffusion of magnetic field lines (Baumjohann and Treumann, 1997).

When the plasma conductivity σ is finite, the magnetic field diffuses through plasma in
order to smooth out local inhomogeneities causing non-zero ∇2B (see Fig. .5.4).

The characteristic time of magnetic diffusion is found by replacing by replacing ∇2 by
1/L2

B in eq. (5.38), where LB is the characteristic gradient length of the inhomogeneity
in the magnetic field. Then B can be solved as

Bo = B0 exp(±t/τd) , (5.41)

where the magnetic diffusion time is given by

τd = µ0σL2
B = L2

B/Dm. (5.42)

If σ →∞ (or LB is very large), the diffusion time becomes very long and magnetic field
is not able to diffuse across plasma.

5.4.2 Convection equation

If the plasma conductivity σ →∞, the diffusion term is small and eq. (5.38) yields the
convection equation

∂B

∂t
= ∇× (v ×B) . (5.43)

The situation is like that shown in Fig. 5.5. If plasma moves, the magnetic field lines
must follow, because they can’t diffuse across plasma. It is said that the magnetic field
is frozen in the plasma.

where the magne5c diffusion 5me τd is given by 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5.4.2 Convection equation

If the plasma conductivity σ →∞, the diffusion term is small and eq. (5.38) yields the
convection equation

∂B

∂t
= ∇× (v ×B) . (5.43)

The situation is like that shown in Fig. 5.5. If plasma moves, the magnetic field lines
must follow, because they can’t diffuse across plasma. It is said that the magnetic field
is frozen in the plasma.

If  σ –> ∞  (or LB is very large), the diffusion 5me becomes very long and magne5c 
field is not able to diffuse across plasma. 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Magne.c merging 

However, if plasma velocity v or the gradient scale length LB or conduc5vity σ 
decreases, magne5c field starts to diffuse. This may occur within a very limited region, 
e.g. at the subsolar magnetopause or in the magnetotail. 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Figure 5.6: Evolution of field line merging (Baumjohann and Treumann, 1997).

5.4.3 Magnetic merging

If the magnetic induction eq. (5.38) is written in a simple dimensional form

B

τ
=

vB

LB
+

B

τd
. (5.46)

The ratio of the first and second term give the magnetic Reynolds number

Rm = µ0σLBv . (5.47)

If Rm ! 1 convection dominates and diffusion can be neglected. For example, the solar
wind magnetic Reynolds number is about Rm ≈ 7 · 1016.

However, if plasma velocity v or the gradient scale length LB or conductivity σ decrease,
magnetic field starts to diffuse. This may occur within a very limited region. E.g. the
solar wind magnetic field (IMF) is frozen in the solar wind plasma and the same is true
for magnetospheric magnetic field and plasma. These two magnetic fields may interact
within a rather narrow region within the magnetopause.

Consider a magnetic topology with antiparallel field lines frozen into the plasma like
in Fig. 5.6, left panel. Such a topology exists around thin current sheets like at the
magnetopause and in the tail neutral sheet. If the field lines on both sides don’t move,
the topology is stable. However, when the plasma and field lines move toward the current
sheet, the magnetic fields may reorganize in a small volume and so called merging, also
called reconnection, takes place. In the reconnection point, the total magnetic field is
very weak and if the two fields are antiparallel, a neutral point (in 2D) or neutral line
(perpendicular to the plane in 3D) will form, where B = 0. In that point plasma is free
from magnetic field and may flow as the thick arows show. The topology of magnetic
field lines changes, too. X‐type neutral line 

•   Magne5c field diffusion (Rm < 1) occurs in a limited region.  
•   Magne5c field is zero only at a single line, at the neutral line (in Y‐direc5on). 
•   Constant Ey (reconnec5on electric field) in steady‐state. 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Pritchett, 2001 

X‐type neutral line: reality is more complicated 

When the diffusion region width becomes smaller than the ion iner5al length δi = c/ωpi, 
ions start to diffuse from the magne5c field (top panel), whereas electrons s5ll follow the 
ExB‐driV (bocom panel). 

X‐type neutral line: reality is more complicated 

Ions diffuse from the magne5c field in the ion diffusion region, whereas magne5c field 
remains frozen into the mo5on of the electrons and diffuse later inside the smaller 
electron diffusion region. Separa5on of ions and electrons sets up the Hall current system.   

Mozer et al., 2002 
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Plasma convec.on 

 Plasma convec5on in the 
ionosphere is due to 
reconnec5on of the IMF and 
the geomagne5c field at the 
dayside magnetopase and in 
the magnetotail. 
 
The result is the 2‐cell 
convec5on pacern in the 
ionosphere during southward 
IMF condi5ons. 
 
During northward IMF, 
reconnec5on may take place 
poleward of the cusp. 

MHD perpendicular currents 

The second term gives the diamagne:c current (perpendicular to B) 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the oval. At the oval boundaries they are connected to field-aligned currents (FACs),
which are also known as Birkeland currents according to Kristian Birkeland (Norwegian
auroral explorer and scientist, 1867-1917). The poleward FAC system is called Region 1
and the more equatorward system Region 2. The direction of currents changes from dusk
to dawn: on the duskside Region 2 current is downward and Region 1 current upward,
whereas in the dawnside Region 2 current is upward and Region 1 current downward.
The total Region 1 current is 1–2 MA and Region 2 current is smaller, less than 1 MA.
Since Region 1 current is larger than Region 2 current, a part of Region 1 current closes
across the polar cap, especially in the summer time when conductances in the polar cap
are larger.

It is obvious that the Hall current system must also be associated with FACs as shown
in Fig. 5.13. The region where the eastward and westward electrojets meet in the
premidnight sector is known as Harang discontinuity region and obviously an upward
FAC flows from that region. Within that region the convection electric field changes
from northward (evening) via westward to southward (morning). Downward currents on
the dayside must feed the electrojets.

It is not completely clear how these FACs map to the magnetosphere. It is generally
believed that Region 1 currents connect mostly to the magnetospheric boundaries while
region 2 currents close in the inner magnetosphere, probably by the partial ring current
(Fig. 5.14). The magnetopause JM and tail current JT can be described as diamagnetic
currents.

5.9 Perpendicular and parallel currents in the MHD
approach

The various perpendicular currents in an inhomogeneous and possibly time-varying plasma
are not necessarily divergence-free but lead to a generation of field-aligned currents

We start from the momentum equation (5.22) and take the cross product with B

j⊥ = − 1

B2

(

ρm
dv

dt
×B +∇p×B

)

. (5.62)

There are two terms on the right hand side of equation above that we will study in the
following. If the first term is small, we get only the current asssociated with the pressure
gradient

j⊥ =
B×∇p

B2
. (5.63)

This diamagnetic current was discussed in Section 5.7.

(5.27)


and the first term gives the polariza:on current, aka iner:al current, (also 
perpendicular to B). The second form comes by using E=‐v x B. 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Figure 5.15: Example of contours of constant plasma pressure (red) and flux tube
volume (blue) in the equatorial plane, which give rise to a field-aligned current to the
ionosphere (Auroral Plasma Physics, 2002).

Current conservation ∇ · j‖ = −∇ · j⊥ gives

∇ · j‖ = −∇ · j⊥ = −∇ ·
[
B×∇p

B2

]

. (5.64)

It can be shown (Vasyliunas, 1970; Heinemann and Pontius, 1990) that this equation
yields

/ion

eq

j‖
B

= −Beq

B2
eq

·∇peq ×∇V , (5.65)

the so called Vasyliunas equation. Here V is the differential flux tube volume (i.e. the
volume of a magnetic flux tube of unit magnetic flux). This volume is given by

V =
∫ ion

eq

ds

B
, (5.66)

where the integral is extended along a magnetic field line from the equatorial plane to
the ionosphere. If, for simplicity, we assume that j‖ vanishes in the equatorial plane,
eq. (5.65) gives the parallel current density in the ionosphere. This approach doesn’t
imply any generation mechanism, it just addresses diversion from the perpendicular to
the parallel current.

For the current to be diverted accordig to eq. (5.65), it is necessary that contours of
constant pressure p and constant flux tube volume V in the equatorial plane are not
aligned with each other. Thus e.g. reduction of plasma pressure in the equatorial plane
(or change in flux tube volume) may lead to a field-aligned current (Fig. 5.15).

If the pressure gradient term in eq. (5.62) is small, the first term, the inertial term may
dominate. In this case, the perpendicular current reduces to

j⊥ = −ρm

B2

dv

dt
×B . (5.67)
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The MHD momentum equation (5.22) can now be written as
(

∂v

∂t
+ v ·∇v

)

ρm =
1

µ0
(B ·∇)B−∇

(
B2

2µ0
+ p

)

. (5.56)

The first term represents the effect of magnetic tension and the second term the com-
bined effect of isotropic magnetic pressure and isotropic particle pressure. The first force
appears whenever the magnetic field lines are curved. The second force occurs when the
magnetic field strength or particle pressure varies from position to position,

Often either the magnetic pressure or plasma pressure p dominates, in which case the
smaller of the two terms can be neglected. Plasma beta is defined as

β =
p

B2/2µ0
. (5.57)

If β # 1, the plasma pressure dominates and the magnetic pressure can be neglected
and if β $ 1, the opposite holds.

5.7 Static MHD equilibrium

If we choose a reference frame in which the fluid is at rest, the conditions for a static
equilibrium are obtained by setting ∂/∂t = 0 and v = 0 in the momentum equation
(5.22). Then we get

j×B = ∇p . (5.58)

By taking the dot product with j and B, it follows that j · ∇p = 0 and B · ∇p = 0.
It follows that the current density j and the magnetic field B must lie on surfaces of
constant pressure.

By taking the cross product with B on both sides of the equation above, the left-hand
side gives

(j×B)×B = (j·B)B−(B·B)j = j‖BB−B2j‖−B2j⊥ = B2j‖−B2j‖−B2j⊥ = −B2j⊥ ,

and we get a current perpendicular to B

j⊥ =
B×∇p

B2
(5.59)

which is called the diamagnetic current. Any plasma containing transverse density or
pressure gradients carries such diamagnetic currents. They are called diamagnetic since

<=> 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This current is known as the polarization current (or sometimes as inertial current) ,
because it is formally equivalent to the polarization drift in a time varying electric field.
It is mainly carried by ions (ρm = nimi + neme ≈ nimi). By using E = −v ×B, it is
often expressed in form

j⊥ =
ρm

B2

∂E⊥

∂t
(5.68)

and here it is assumed that the spatial gradient in electric field is small inside the ion
gyroradius, so that only the of the the partial derivate with respect to time in the
covective derivate is taken into account.

The parallel current divergence gives

∇ · j‖ = ∇ · (j‖
B

B
) = ∇ · (

j‖
B

B) = ∇(
j‖
B

) · B +
j‖
B
∇ · B = B · (

B

B
·∇)(

j‖
B

)

= B
∂

∂s

(j‖
B

)
,

since ∇ · B = 0. The gradient operator along the magnetic field line is denoted by

∂

∂s
=

B

B
·∇ . (5.69)

Now the current continuity ∇ · j‖ = −∇ · j⊥ gives, by taking divergence of eq. (5.67),

B
∂

∂s

(j‖
B

)
=

ρm

B2
B ·∇×

(
dv

dt

)

=
ρm

B

dΩ‖

dt
, (5.70)

where s is the coordinate in the magnetic field direction and Ω‖ is the parallel component
of the vorticity. Vorticity and its parallel component are defined as

Ω = ∇× v ⇒ Ω‖ = b̂ ·∇× v . (5.71)

Eq. (5.70) tells that a total time derivate (so it can be a pure temporal change or spatial
change along the streamline) in vorticity will give rise to a field-aligned current. Again,
the current density can be get by integrating eq. (5.70) along the magnetic field line.

/ion

eq

j‖
B

= −
∫ ion

eq

ρm

B2

dΩ‖

dt
ds . (5.72)

Even though the generation mechanisms of Region 1 and 2 currents are still under
discussion, Region 1 field-aligned currents are believed to be associated with changes
in the vorticity, whereas Region 2 currents, which map closer to Earth, are probably
associated with pressure gradients in the vicinity of the ring current region.

Let’s briefly study vorticity as a possible generator mechanism for Region 1 current
(Hasegawa and Sato, 1989). The magnetospheric plasma adjacent to the magnetopause
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from diamagne.c current 
By using the condi5on of current con5nuity, 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Figure 5.15: Example of contours of constant plasma pressure (red) and flux tube
volume (blue) in the equatorial plane, which give rise to a field-aligned current to the
ionosphere (Auroral Plasma Physics, 2002).

Current conservation ∇ · j‖ = −∇ · j⊥ gives

∇ · j‖ = −∇ · j⊥ = −∇ ·
[
B×∇p

B2

]

. (5.64)

It can be shown (Vasyliunas, 1970; Heinemann and Pontius, 1990) that this equation
yields

/ion

eq

j‖
B

= −Beq

B2
eq

·∇peq ×∇V , (5.65)

the so called Vasyliunas equation. Here V is the differential flux tube volume (i.e. the
volume of a magnetic flux tube of unit magnetic flux). This volume is given by

V =
∫ ion

eq

ds

B
, (5.66)

where the integral is extended along a magnetic field line from the equatorial plane to
the ionosphere. If, for simplicity, we assume that j‖ vanishes in the equatorial plane,
eq. (5.65) gives the parallel current density in the ionosphere. This approach doesn’t
imply any generation mechanism, it just addresses diversion from the perpendicular to
the parallel current.

For the current to be diverted accordig to eq. (5.65), it is necessary that contours of
constant pressure p and constant flux tube volume V in the equatorial plane are not
aligned with each other. Thus e.g. reduction of plasma pressure in the equatorial plane
(or change in flux tube volume) may lead to a field-aligned current (Fig. 5.15).

If the pressure gradient term in eq. (5.62) is small, the first term, the inertial term may
dominate. In this case, the perpendicular current reduces to

j⊥ = −ρm

B2

dv

dt
×B . (5.67)

it can be shown 
(Vasyliunas, 1970) that we get 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eq. (5.65) gives the parallel current density in the ionosphere. This approach doesn’t
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where the integral is extended along a magnetic field line from the equatorial plane to
the ionosphere. If, for simplicity, we assume that j‖ vanishes in the equatorial plane,
eq. (5.65) gives the parallel current density in the ionosphere. This approach doesn’t
imply any generation mechanism, it just addresses diversion from the perpendicular to
the parallel current.

For the current to be diverted accordig to eq. (5.65), it is necessary that contours of
constant pressure p and constant flux tube volume V in the equatorial plane are not
aligned with each other. Thus e.g. reduction of plasma pressure in the equatorial plane
(or change in flux tube volume) may lead to a field-aligned current (Fig. 5.15).

If the pressure gradient term in eq. (5.62) is small, the first term, the inertial term may
dominate. In this case, the perpendicular current reduces to

j⊥ = −ρm
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Diversion of the diamagne5c current at the magne5c equator plane to produce FAC. 

MHD FAC from the iner.al current 
Similarly, it can be shown that for the iner5al current we get the following FAC 

Plasma flow in the eq. plane (leV) and FACs by vor5city (right): solid lines at dusk 
correspond to upward FAC from the ionsophere and dashed lines in the dawn to 
downward FAC. 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This current is known as the polarization current (or sometimes as inertial current) ,
because it is formally equivalent to the polarization drift in a time varying electric field.
It is mainly carried by ions (ρm = nimi + neme ≈ nimi). By using E = −v ×B, it is
often expressed in form

j⊥ =
ρm

B2

∂E⊥

∂t
(5.68)

and here it is assumed that the spatial gradient in electric field is small inside the ion
gyroradius, so that only the of the the partial derivate with respect to time in the
covective derivate is taken into account.

The parallel current divergence gives

∇ · j‖ = ∇ · (j‖
B

B
) = ∇ · (

j‖
B

B) = ∇(
j‖
B

) · B +
j‖
B
∇ · B = B · (

B

B
·∇)(

j‖
B

)

= B
∂

∂s

(j‖
B

)
,

since ∇ · B = 0. The gradient operator along the magnetic field line is denoted by

∂

∂s
=

B

B
·∇ . (5.69)

Now the current continuity ∇ · j‖ = −∇ · j⊥ gives, by taking divergence of eq. (5.67),

B
∂

∂s

(j‖
B

)
=

ρm

B2
B ·∇×

(
dv

dt

)

=
ρm

B

dΩ‖

dt
, (5.70)

where s is the coordinate in the magnetic field direction and Ω‖ is the parallel component
of the vorticity. Vorticity and its parallel component are defined as

Ω = ∇× v ⇒ Ω‖ = b̂ ·∇× v . (5.71)

Eq. (5.70) tells that a total time derivate (so it can be a pure temporal change or spatial
change along the streamline) in vorticity will give rise to a field-aligned current. Again,
the current density can be get by integrating eq. (5.70) along the magnetic field line.
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= −
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eq

ρm

B2

dΩ‖

dt
ds . (5.72)

Even though the generation mechanisms of Region 1 and 2 currents are still under
discussion, Region 1 field-aligned currents are believed to be associated with changes
in the vorticity, whereas Region 2 currents, which map closer to Earth, are probably
associated with pressure gradients in the vicinity of the ring current region.

Let’s briefly study vorticity as a possible generator mechanism for Region 1 current
(Hasegawa and Sato, 1989). The magnetospheric plasma adjacent to the magnetopause

where the field‐aligned component 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vor5city is given by 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where s is the coordinate in the magnetic field direction and Ω‖ is the parallel component
of the vorticity. Vorticity and its parallel component are defined as
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Eq. (5.70) tells that a total time derivate (so it can be a pure temporal change or spatial
change along the streamline) in vorticity will give rise to a field-aligned current. Again,
the current density can be get by integrating eq. (5.70) along the magnetic field line.
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Even though the generation mechanisms of Region 1 and 2 currents are still under
discussion, Region 1 field-aligned currents are believed to be associated with changes
in the vorticity, whereas Region 2 currents, which map closer to Earth, are probably
associated with pressure gradients in the vicinity of the ring current region.

Let’s briefly study vorticity as a possible generator mechanism for Region 1 current
(Hasegawa and Sato, 1989). The magnetospheric plasma adjacent to the magnetopause
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Figure 5.16: Left: Mapping of ionospheric flow to equatorial plane with Earth’s rotation
not taken into account. The view is above the north pole (convection pattern from Wolf
in Introduction to Space Physics, 1995, with space charges added). Right: Calculated
field-aligned currents from the flow vorticity. The dashed contours at dawn indicate cur-
rent to the ionosphere (downward), whereas the solid contours at dusk indicate current
out from the ionosphere (up) (Hasegawa and Sato, 1989).

is moving in the same direction than the solar wind plasma (e.g. by viscous interaction).
In the inner magnetosphere, plasma is moving in the sunward direction. Hence, the
plasma motion in the equatorial plane of the magnetosphere consists of two cells like in
Fig. 5.16. This kind of twin-vortex plasma flow pattern is associated with space charges,
since

∇ · E = −∇ · (v ×B) ≈ −B · Ω ≡ ρq

ε0
. (5.73)

Positive charges accumulate on the dawn side and negative on the duskside. Those
charges tend to move along field lines, so then the field-aligned current flows downward
on the dawnside and upward from the duskside. The location is at the earthward edge
of the low latitude boundary layer. These currents agree with Region 1 sense.

The large scale mechanisms for generation of field-aligned currents presented above may
be able to explain large scale current systems like Region 1 and 2 and substorm current
wedge currents. However, many auroral features have spatial scales (of the order of ion
Larmor radius or ion inertial length), where the MHD description is no longer adequate,
but the full plasma kinetic theory should be used. Plasma waves and instabilities and
wave-particle interactions may also play an important role.
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Group task 3: What kind of horizontal and F‐A 
currents are flowing in the polar ionosphere? 

Exercise: Add EF and currents in the three panels. 

     

 

              Conductivity                              Electric field (arrows) 
 

 

     

 

  Pedersen current and FACs             Hall current and FACs 
  (FAC: dot=up, cross=down) 
 

 

Group task 3: What kind of horizontal and F‐A 
currents are flowing in the polar ionosphere? 

Solu5on on the blackboard. 


