Lesson 6: Proton aurora, diffuse aurora and some specific phenomena

AGF-351 Optical methods in auroral physics research UNIS, 24.-25.11.2011

> Anita Aikio University of Oulu Finland

Origin of diffuse aurora

- It has been believed that diffuse aurora is caused by pitch-angle scattering of CPS electrons (0.1–30-keV) into the loss cone, but the precise mechanism has been unclear.
- Two classes of magnetospheric plasma waves, electrostatic electron cyclotron harmonic (ECH) waves and whistler-mode chorus waves, could be responsible for wave-particle interactions that lead to P-A scattering:

$$\omega - \mathbf{k}_{\parallel} \mathbf{v}_{\parallel} = \mathbf{n} \Omega_{\rm ec} / \gamma$$

where ω is the wave frequency, Doppler shifted to a multiple (n=0,±1,±2,...) of the relativistic electron gyrofrequency Ω_{ec} and k_{\parallel} and v_{\parallel} are parallel components of the wave vector and particle velocity (γ is the relativistic factor).

 Thorne et al. reported in Nature in 2010 that scattering by whistler mode chorus waves (f < f_{ec}) is the dominant cause of the most intense diffuse auroral precipitation.

Seasonal effects on energetic electron precipitation

Newell et al. published in 1996 in Nature an article: "Suppression of discrete aurorae by sunlight"

They found that:

- the beams of accelerated electrons that cause intense discrete aurorae occur mainly in darkness: the winter hemisphere is favoured over the summer hemisphere, and night is favoured over day (by a factor of 3)
- discrete aurora rarely occur in the presence of diffuse aurora

Also, other phenomena related to electrostatic acceleration show the same seasonal variation:

- intense electric fields in auroral acceleration region (Marklund et al., 1994)
- upflowing ion beams (Collis et al., 1998)
- auroral kilometric radiation (Kumamota and Oya, 1998)

Seasonal effects on auroral particle precipitation

Conclusion by Newell et al. (1996): **Ionospheric conductivity plays a role**, e.g. by the ionospheric feedback instability.

Another explanation suggested is that formation of parallel electric field requires **low background densities at high altitudes** (density cavities), which MIGHT form preferentially when ionospheric electron densities are low in the entire field line.