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Proton aurora

Distribution of proton and electron aurora before and after substorm onset
(Fukunishi, 1974). Proton aurora is very weak compared to electron aurora!
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Proton aurora

H+ precipitation: charge-exchange with
ionospheric H => spreading of H+ aurora

in the ionosphere
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Excited hydrogen atoms H* produce

H+ precipitation from the

magnetosphere by pitch-

angle diffusion due to

e ftight field line curvature
compared to ion
gyroradius

* wave-particle interactions

emissions Ha (656.3 nm) and Hf3 (486.1 nm).

Proton aurora

Proton aurora (left) within the main oval before substorm onset (Donovan, 2011).

Proton Aurora vs. Electron Aurora
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H+: Typically viewed from the
ground via 436 nm “Balmer
Beta” viewed via MSP; viewed
from space via Lyman-Alpha,
and from the ground through
secondary electron emissions...
big problem: paucity of data.

e-: Easily observed via imagers, MSPs,
spectrographs, etc. Viewed in various
emissions, and at different scales, all
of which convey different information
and bring different problems... big
problems: complicated phenomena;

M, 1, or MI; cowboy tendencies of

auroral observers ©!
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Proton aurora

H+ aurora (bottom) follows the configurational changes of the magnetotail (top)
(Donovan, 2011). When magnetotail stretches (incl. angle decreases), field lines
map to lower latitudes and H+ aurora shifts equatorward.

remote sense the magnetotail

We can use the H+ aurora to
((stretching, pressure, etc.

Proton aurora

H+ aurora from the cyan region and electron arcs poleward of the ion isotropic

boundary (I1B), which marks the region between dipolar and taillike field lines

(Donovan, 2011).
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Origin of diffuse aurora

It has been believed that diffuse aurora is caused by pitch-angle

scattering of CPS electrons (0.1-30-keV ) into the loss cone, but

the precise mechanism has been unclear.

Two classes of magnetospheric plasma waves, electrostatic electron

cyclotron harmonic (ECH) waves and whistler-mode chorus waves, could be

responsible for wave-particle interactions that lead to P-A scattering:
o=kyv =nQ /v,

where o is the wave frequency, Doppler shifted to a multiple
(n=0,%1,%2,...) of the relativistic electron gyrofrequency .. and k;, and v, are
parallel components of the wave vector and particle velocity (y is the
relativistic factor).
Thorne et al. reported in Nature in 2010 that scattering by
whistler mode chorus waves (f < f, ) is the dominant cause of
the most intense diffuse auroral precipitation.

Frequency kHz

Origin of diffuse aurora

Whistler mode chorus waves (f < f, ) recorded on the ground (left)
and expected distribution in space in a recovery phase of a storm
(right).
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(courtesy of J. Manninen) (Thorne, 2005)
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Statistics: Note polar cap arcs

Fig. 7. Mass plot of discrete arcs for AE = 41-50 nT (from Figure
4) shown together with the equatorial (crosses) and poleward (circles)
boundary points from Figures 6a and 6c.

[Lassen & Danielsen, JGR, 1989]

Polar cap arcs

Kullen et al., JGR (2002): during northward IMF (Bz<0), strong IMF
magnitude, and high solar wind speed. Dependence on By.

Polar UVI Lyman-Birge-Hopfield long (LBHI, 160-180
nm) filter: from N2 molecules, intensity depends on

total energy flux of precipitating electrons.
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Cusp aurora

* Caused by precipitating magnetosheath electrons and ions

* Due to dayside reconnection (FTEs), also mixture of magnetospheric and
magnetosheath plasma populations

* Relatively low energies of these particles means that the aurora is
dominated by 630.0 and 636.4 nm (red line) emissions of atomic oxygen

* Since the radiative lifetime of the 1D state is 110 s, the excited atomic
oxygen moves with the thermospheric wind (e.g. for 500 m/s the
distance traveled is about 55 km from the site of excitation).

630.0 nm emission measured by
ASC at LYR at 07:34 UT and
mapped to an altitude of 250 km.
F-o-v corresponds to 80° zenith
angle (Sandholt et al., JGR 2000).

North-south aurora and plasma bubbles

Bursty bulk flows (BBFs) in the magnetotail are transient high-
speed (v,2 400 km/s) flows which contain depleted (low Ne) flux
tubes.
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Sergeev et al.. (2000)
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North-south aurora and plasma bubbles

Bursty bulk flows (BBFs) in the magnetotail are transient high-
speed (v,2 400 km/s) flows which contain depleted (low Ne) flux
tubes.
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Nakamura et al.. (2001)

The main explanation for BBFs is the plasma bubble model by
Pontius and Wolf (1990): The bubble moves earthward due to E
(interchange instability), and is associated with F-A currents.

North-south aurora and plasma bubbles

North-south aurora was suggested by Henderson et al. (1998) to be
asociated with bursty bulk flows (BBFs) in the magnetotail. The bubble
model is the most plausible model to explain BBFs and observations
confirm that the upward FAC of the bubble is associated with N-S aurora
(also called streamers) (e.g. Kauristie et al., 2003; Pitkdnen et al., 2011).
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Seasonal effects on energetic electron precipitation

Newell et al. published in 1996 in Nature an article:
“Suppression of discrete aurorae by sunlight”

They found that:

* the beams of accelerated electrons that cause intense
discrete aurorae occur mainly in darkness: the winter
hemisphere is favoured over the summer hemisphere, and
night is favoured over day (by a factor of 3)

» discrete aurora rarely occur in the presence of diffuse aurora

Also, other phenomena related to electrostatic acceleration

show the same seasonal variation:

* intense electric fields in auroral acceleration region
(Marklund et al., 1994)

* upflowing ion beams (Collis et al., 1998)

* auroral kilometric radiation (Kumamota and Oya, 1998)

Seasonal effects on energetic electron precipitation

Probability of observing accelerated e~ (monoenergetic) aurora
(for energy fluxes > 5 erg/cm?s?)

Prab (%)

Darkness Sunlight

Newell et al. (1996)




Seasonal effects on auroral particle precipitation

Conclusion by Newell et al. (1996): lonospheric conductivity
plays a role, e.g. by the ionospheric feedback instability.

Another explanation suggested is that formation of parallel
electric field requires low background densities at high
altitudes (density cavities), which MIGHT form preferentially
when ionospheric electron densities are low in the entire field
line.
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